PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

for the

TIRE FIRE PROPERTY

YUROK TRIBE ASSIGNMENT NUMBER 530-053-010-73 (APN: 530-053-010-000) HIGHWAY 96, NEAR WEITCHPEC, CALIFORNIA

November 13, 2013

Prepared for: Yurok Tribe Environmental Program 190 Klamath Boulevard Klamath, California 95548

Prepared by: Stan Thiesen and Orrin Plocher

of

Freshwater Environmental Services

78 Sunny Brae Center Arcata, California 95521 Phone (707) 839-0091

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT FOR THE TIRE FIRE SUBJECT PROPERTY YUROK TRIBE ASSIGNMENT NUMBER 530-053-010-73 (APN: 530-053-010-000) HIGHWAY 96, NEAR WEITCHPEC, CALIFORNIA

Prepared for: Suzanne Fluharty, Ph.D., Yurok Tribe Environmental Program 190 Klamath Boulevard Klamath, California 95548

November 13, 2013

Prepared by: Stan Thiesen and Orrin Plocher

of

Freshwater Environmental Services 78 Sunny Brae Center Arcata, California 95521 Phone (707) 839-0091

Thieser

Stan Thiesen P.G. No. 7990

Orlon

Orrin Plocher Geologist

APPROVAL PAGE

Approved by: Music Suzanne Fluharty, Ph.D., Yurok Tribe Environmental Program **Environmental Specialist** Approved by: Kamlen Kathleen Sloan, Ph.D., Yurok Tribe Environmental Program **Program Director**

Approved by: Omploch

Orrin Plocher, Freshwater Environmental Services Project Manager

Approved by: Ston Thieser

Stan Thiesen, Freshwater Environmental Services Geologist

Approved by:

Glenn Kistner, Tribal 128(a) Grant Lead USEPA Region 9

15NOV ADI3

Date

1-19-13

Date

11-13-13

Date

13-

Date

Date

DISTRIBUTION LIST

Kathleen Sloan, Ph.D., Program Director Yurok Tribe Environmental Program 190 Klamath Boulevard Klamath, California 95548

Suzanne Fluharty, Ph.D., Environmental Specialist Yurok Tribe Environmental Program 190 Klamath Boulevard Klamath, California 95548

Ray Martell, Assistant Director - Pollution Prevention Yurok Tribe Environmental Program 190 Klamath Boulevard Klamath, California 95548

Glenn Kistner Tribal 128(a) Grant Lead USEPA Region 9 75 Hawthorne Street San Francisco, CA 94105

Eugenia E. McNaughton, Ph.D. Quality Assurance Office, US EPA Region 9 75 Hawthorne Street San Francisco, CA 94105

Stan Thiesen Freshwater Environmental Services 78 Sunny Brae Center Arcata, California 95521

TABLE OF CONTENTS

8.9 Principal Study Questions		26
-------------------------------	--	----

LIST OF TABLES

- Table 1Summary of Chemical Analyses of Soil Samples for Petroleum, SVOCs, and
VOCs
- Table 2
 Summary of Chemical Analyses of Soil Samples for Metals
- Table 3 GPS Coordinates Collected by YTEP

LIST OF FIGURES

- Figure 1 Location Map
- Figure 2 USGS 7.5 Minute Topographic Map
- Figure 3 2012 Aerial Photograph
- Figure 4 Sample Locations
- Figure 5 Sample Location Detail

LIST OF APPENDICES

- Appendix A Boring Logs
- Appendix B Sample Location Photographs
- Appendix C Laboratory Report and Chain-Of-Custody Record 1
- Appendix D Laboratory Report and Chain-Of-Custody Record 2
- Appendix E Laboratory Report and Chain-Of-Custody Record 3
- Appendix F Approved Cultural Resources Management Permit Application

v

ACRONYMS AND ABBREVIATIONS

ASTM	ASTM International (formerly American Society for Testing and Materials)
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Cleanup, and Liability Act
CFR	Code of Federal Regulations
CHHSL	California Human Health Screening Levels
CLP	Contract Laboratory Program
CWA	Clean Water Act
DQA	Data Quality Assessment
DQI	Data Quality Indicators
DQO	Data Quality Objectives
EPA	U.S. Environmental Protection Agency
ESA	Environmental Site Assessment
ESL	Environmental Screening Levels
FEMA	Federal Emergency Management Agency
FSP	Field Sampling Plan
GPS	Global Positioning System
GIS	Geographic Information System
GC/MS	Gas Chromatography and Mass Spectrometry
IDW	Investigation-Derived Waste
IRIS	Integrated Risk Information System (USEPA)
I CS/I CSD	Laboratory Control Sample and Laboratory Control Sample Duplicates
MDI	Method Detection Limit
MPC	Measurement Performance Criteria
MQQ	Measurement Quality Objective
MS/MSD	Matrix Spike and Matrix Spike Duplicate
ma/ka	Milligrams per kilogram
ma/l	Milligrams per liter
NRCS	Natural Resource Conservation Service
PARCCS	Precision Accuracy Representativeness Completeness Comparability and
17410000	Sensitivity
PDS	Post digestion spike
PF	Performance Evaluation
PRG	Preliminary Remediation Goal
PROL	Project-Required Quantitation Limit
QA	Quality Assurance
	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
	Quality Control
	Quantitation Limit
RCRA	Resource Conservation and Recovery Act
RPD	Relative Percent Difference
RSIs	Residential Screening Levels
%R	Percent Recovery
SAP	Sampling and Analysis Plan (an integrated ESP and OAPP)
0/11	

SOP	Standard Operating Procedures
-----	-------------------------------

- SOW Statement of Work
- SVOC Semi-Volatile Organic Compound
- USCS Unified Soil Classification System
- USDA United States Department of Agriculture
- USGS United States Geological Survey
- VOC Volatile Organic Compound
- YTEP Yurok Tribe Environmental Program

1.0 INTRODUCTION

Freshwater Environmental Services (FES) has prepared this report of findings for the Phase II Environmental Site Assessment (ESA) of a rural property formerly used as a residence (the Subject Property). A Phase I ESA conducted by the Yurok Tribe Environmental Program (YTEP) dated September 17, 2012 (YTEP, 2012) was completed for the Subject Property.

This report conforms to the process and principles recommended in the *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process*, E-1903-11, (ASTM, 2011). This report documents the soil sampling activities performed at the Subject Property. The location of the Subject Property is shown on Figure 1, Figure 2, and Figure 3.

The primary objectives of this Phase II ESA were to assess and evaluate the recognized environmental conditions identified in the Phase I ESA conducted by the Yurok Tribe Environmental Program (YTEP, 2012), and to provide sufficient information regarding the presence or absence of contamination at the Site (ASTM, 2002). The scope of work developed by FES for this assessment was based on the conclusions of the Phase I ESA. Section 10.0 of the Phase I ESA (YTEP, 2012) listed the following as Recognized Environmental Conditions (quoted directly from the report).

- Evidence of a large tire fire that occurred on the property that resulted in a large area of ashen rubber, melted metal and burned plastic.
- The burning of a former dwelling that has possibly contaminated the soils on the Subject Property

The principal study questions are whether the Subject Property contains contaminated soils from the unauthorized burning of tires and a former residence above concentrations regarded as safe for use of the Subject Property?

The alternative actions that could result from resolution of the principal study questions include:

- If contamination is not identified over allowable levels the Subject Property can be cleaned up and the Yurok Tribe can proceed with redevelopment of the Subject Property; and
- If contamination is identified over allowable levels, additional assessment and/or cleanup may be necessary prior to redevelopment and use of the Subject Property.

This Phase II ESA is a Tribal Response Program project being funded by a CERCLA Section 128(a), Tribal Response Program grant that includes hazardous substances and petroleum products.

1.1 Subject Property Name

The Subject Property is a former residential property on Yurok Tribe Assignment Number 530-053-010-73 which is a portion of Assessors Parcel Number (APN) 530-053-010-000. The Subject Property is known as the Tire Fire Property.

1.2 Subject Property Location

The Subject Property is located south of State Highway 96 and north of the Klamath River approximately one mile east of Weitchpec, California. The location of the Subject Property is shown on Figures 1 through 3. The Subject Property is located within Section 11, Township 9 North, Range 4 East of the Humboldt Base and Meridian. The Subject Property is located within the boundaries of APN 530-053-010-000 in Humboldt County, California.

2.0 BACKGROUND

The Subject Property is located approximately one mile east of Weitchpec, Humboldt County, California. The parcel which contains the Subject Property (APN 530-053-010-000) includes an area of approximately 722 acres and is much larger than the approximate one acre of the Subject Property. The parcel is owned by the Yurok Trust.

Section 8.0 of the Phase I ESA (YTEP, 2012) listed the following as environmental findings (quoted directly from the report).

- Two large areas show evidence of recent burning of multiple tires on the Subject Property.
- A former dwelling that has been burned to the ground on the Subject Property.
- Multiple areas of solid waste and debris throughout the Site.
- A gold mining operation adjacent to the Subject Property was in operation in the late 1800's.

Section 10.0 of the Phase I ESA (YTEP, 2012) listed the following as Recognized Environmental Conditions (quoted directly from the report).

- Evidence of a large tire fire that occurred on the property that resulted in a large area of ashen rubber, melted metal and burned plastic.
- The burning of a former dwelling that has possibly contaminated the soils on the Subject Property

2.1 Sampling Area Description

The Subject Property occupies approximately one acre that is mostly flat and located approximately one mile east of Weitchpec between State Highway 96 and the Klamath River. The central portion of the Subject Property has been cleared of most vegetation. The area surrounding the Subject Property is mostly vegetated with scattered trees, brush, and grass. The Subject Property has not been cleared of the burned tires or other debris.

The Phase I ESA, (YTEP, 2012) indicated that the oldest historic documentation is a 1925 Historical Topographic Map that does not indicate the presence of any structures in the vicinity of the Subject Property. No structures were shown on the other Historical Topographic Maps dated 1952, 1979, and 1997. Historical aerial photographs from 1947, 1954, 1973, 1983 and 1993 do not indicate the presence of structures on the Subject Property. Aerial photographs from 1998 and 2005 show the mobile home on the Subject Property.

2.2 Previous Investigations/Regulatory Involvement

The only investigation of the Subject Property has been a Phase I ESA, (YTEP, 2012) performed for the CERCLA 128a Tribal Response Program. The Yurok Tribe Environmental Program is not aware of any previous sampling efforts at the Subject Property.

3.0 SITE GEOLOGY AND HYDROLOGY

The Subject Property has an elevation of approximately 275 feet above mean sea level based on the United States Geological Survey (USGS) 10-meter Digital Elevation Model. The topography in the area of the Subject Property is relatively flat with a slight slope towards the Klamath River which at its closest point is approximately 220 feet to the southeast. Based on data obtained from the Natural Resource Conservation Service (NRCS), the average annual precipitation at the Subject Property is approximately 55 inches.

The Subject Property is shown on the "Geologic Map of the Weed Quadrangle, California" (Wagner and Saucedo, 1987) as being within an area of Franciscan Formation metasedimentary rock. The nearest fault zoned as active (within the last 11,000 years) under the Alquist-Priolo Earthquake Fault Zoning Act, is approximately 25 miles to the west-southwest of the Subject Property.

The following information on soils at the Subject Property is based on Natural Resource Conservation Service (NRCS) maps and data. The depth to bedrock ranges from approximately 20 inches to greater than 39 inches. The depth to water is listed as greater than 80 inches. The soil texture ranges from clay loams to extremely gravelly loams.

There are stream channels along the east and west perimeter of the Subject Property. The nearest surface water is the Klamath River which at its closest point is approximately 220 feet to the southeast of the Subject Property.

4.0 SAMPLING METHODS AND ANALYSIS

4.1 Field Methods

The Yurok Tribe Environmental Program was responsible for determining whether subsurface utilities were present at the Subject Property in the areas where the proposed soil sampling would take place. YTEP also has an approved Cultural Resources Management Permit Application (Appendix F) to ensure that the project would have no impact to cultural resources. Soil samples were collected at a maximum depth of approximately 1.5 feet below ground surface (bgs). Most of the soil samples were collected using a rock bar and shovel. A jackhammer was used to loosen soil for some of the deeper samples. Boring logs were prepared for each sample location and are included in Appendix A.

4.2 Soil Sampling – April 9, 2013

A total of ten soil samples (including one field duplicate) were collected at the Subject Property. One of the samples was collected on the slope above the flat area to provide reference/comparison metals concentrations outside of the expected contamination area at the Subject Property. The samples were collected from a depth intervals ranging from of 0.0 to 0.6 feet bgs. YTEP personnel collected GPS data for the sample locations. The coordinates of the sample locations based on the YTEP data are presented in Table 3. The approximate sample locations are shown on Figure 4 and Figure 5.

4.3 Soil Sampling – July 18, 2013

Additional sampling was proposed because the results from the samples collected on April 9, 2013 indicated that screening levels were exceeded for several analytes in the deeper samples. A total of seven soil samples (including one field duplicate) were collected at the Subject Property. Four of the samples were collected at greater depths from sample locations Tire-Fire-1, Tire-Fire-2, Tire-Fire-3, and Tire-Fire-4.

Two additional samples (Tire-Fire-6 and Tire-Fire-7) were collected from areas that were outside of the areas where contamination was known to be present based on the samples collected on July 9, 2013. Tire-Fire-6 and Tire-Fire-7 were collected from locations down slope of the principal sampling area. Tire-Fire-6 was separated from the principal sampling area by a block wall approximately two-feet high. Tire-Fire-7 was collected at the west end of the block wall where surface runoff from Tire-Fire-3 and Tire-Fire-4 may have been concentrated.

The samples were collected from depth intervals ranging from of 0.0 to 1.2 feet bgs. The samples were shipped by FedEx on Friday July 19, 2013 for overnight delivery. The samples arrived on Monday July 22, 2013 at a temperature of approximately 7.8°C. Because the temperature of the

samples exceeded the recommended temperature range of 0°C to 6°C it was decided to have the laboratory discard the samples.

4.4 Soil Sampling – July 24, 2013

Because of the temperature issue associated with the samples collected on July 18, 2013 another set of samples were collected on July 24, 2013. A total of seven soil samples (including one field duplicate) were collected at the Subject Property. Four of the samples were collected at greater depths from sample locations Tire-Fire-1, Tire-Fire-2, Tire-Fire-3, and Tire-Fire-4. Two additional samples (Tire-Fire-6 and Tire-Fire-7) were collected from areas that were outside of the areas where contamination was known to be present based on the samples collected on July 9, 2013. The samples were collected from depth intervals ranging from of 0.0 to 1.5 feet bgs. The coordinates of the sample locations based on the YTEP data are presented in Table 3. The approximate sample locations are shown on Figure 4 and Figure 5.

4.5 Chemical Analysis Methods

The soil samples were analyzed by Calscience Environmental Laboratories, Inc. (Calscience) of Garden Grove, California. Calscience is certified by the California Department of Public Health for the requested analysis.

4.6 Modifications to the Approved Sampling and Analysis Plan

Because of conditions in the field there were some modifications to the Sampling and Analysis Plan (SAP). These modifications included:

- The SAP indicated that the soil samples would be collected from two depth intervals. The first interval was proposed to be 0.0 to 0.5 feet bgs and the second proposed interval was to be 0.5 to 1.0 feet bgs. Because of the presence of rocks at a depth of approximately 0.6 feet bgs the samples were collected at depth intervals of 0.0 to 0.1 feet bgs and 0.5 to 0.6 feet bgs. Residual burned materials were scraped off the surface prior to sample collection.
- Two samples were proposed in the SAP to target tire burning areas. Because only one area was identified where tires had obviously been burned (Tire-Fire-1) the other proposed sample (Tire-Fire-2) was collected from an area where debris was present beyond the area where tire burning had occurred.
- Four additional samples were collected from greater depths from the initial four sample locations because some analytes exceeded the screening levels from the previous deeper samples.

 Two additional samples were collected (Tire-Fire-6 and Tire-Fire-7) to determine if contamination extended beyond the footprint of the former mobile home. Deeper samples were also collected because screening levels were exceeded for some analytes in the samples collected on April 9, 2013.

5.0 CHEMICAL ANALYSIS RESULTS

The laboratory analytical reports are included in Appendix C, Appendix D, and Appendix E. Detections of analytes that exceeded the screening levels are shown in the table below. In some cases the reporting limit for dimethyl phthalate was higher than the screening level. The reporting limit for arsenic exceeded the screening level.

SUMMARY OF CHEMICAL CONCENTRATIONS EXCEEDING THE SCREENING LEVELS IN SOIL SAMPLES FROM THE APRIL 9, 2013 AND JULY 24, 2013 SAMPLING EVENTS

		TPH- Diesel With	TPH- Motor Oil With	Dimethyl						
Sample ID	Date	Gel (mg/kg)	Gel (mg/kg)	Phthalate (mg/kg)	As (mg/kg)	Cadmium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)
	RSL	83	370	0.035 ^a	0.39 ^b	1.7 ^b	230 ^b	200 ^b	150 ^b	600 ^b
Tire-Fire-1-0.0'-0.1'	4/9/13	25	86	<0.50 / 0.055	1.01	<1.00	82.1	30.0	32.4	1,440
Tire-Fire-1-0.5'-0.6'	4/9/13	<5.0	<25	<0.50 / 0.077	<1.00	<1.00	146	<1.00	27.7	72.9
Tire-Fire-1-(1.2')	7/24/13			<0.010						
Tire-Fire-2-0.0'-0.1'	4/9/13	64	99	0.50 / 0.091	1.04	<1.00	102	19.9	30.3	429
Tire-Fire-2-0.5'-0.6'	4/9/13	36	170	0.53 / 0.091	<1.00	<1.00	181	1.03	28.3	48.4
Tire-Fire-2-(1.3')	7/24/13			<0.010						
Tire-Fire-3-0.0'-0.1'	4/9/13	6,300	12,000	<1.0	10.8	1.91	988	230	86.8	1,270
Tire-Fire-3-0.5'-0.6'	4/9/13	1,000	4,400	<5.0	2.20	<1.00	70.3	14.0	268	84.9
Tire-Fire-3-(1.5')	7/24/13	13	81	<0.010	<1.00	<1.00	204	<1.00	28.3	55.1
Tire-Fire-4-0.0'-0.1'	4/9/13	31	180	<1.0	26.8	2.58	2,430	74.4	64.8	2,830
Tire-Fire-4-0.5'-0.6'	4/9/13	220	930	<2.5	2.54	<1.00	144	7.64	95.9	185
Tire-Fire-4-(1.0')	7/24/13	<5.0	<25	<0.010						
Tire-Fire-5-0.0'-0.1' (Duplicate of Tire-Fire-1-0.0'-0.1')	4/9/13	23	84	<0.50 / 0.074	<1.00	<1.00	97.3	23.3	29.1	1,950
Tire-Fire-6-(0.0'-0.1')	7/24/13	14	150	<0.079	<1.00	<1.00	104	3.96	20.4	90.2
Tire-Fire-7-(0.0'-0.1')	7/24/13	15	88	<0.010	13.1	1.41	234	147	85.5	1,130
Tire-Fire- Background-Metals- 0.0'-0.1'	4/9/13				4.33	<1.00	30.5	11.0	52.8	60.6

NOTES:

0.055 Analytes detected at or above the screening level shown in red bold.

<0.50/0.055 A second analysis was conducted for SVOCs using lower reporting limits for samples Tire-Fire -1,

Tire-Fire-2, and Tire-Fire-5 (field duplicate).

- TPH Total Petroleum Hydrocarbon
- mg/kg milligrams per kilogram
- RSL Resident Screening Level.

Diesel Range Organics and TPH-Motor Oil reported after silica gel cleanup.

---Not analyzed.

6.0 DATA QUALITY EVALUATION

6.1 Review of Reporting Limits

The sampling and analysis plan included tables listing the reporting limits provided by Calscience for all analytes. FES requested the lowest reporting limits possible for all analytes. Calscience initially analyzed SVOCs using higher reporting limits than were provided for the SAP. After the original SVOC results were received, FES requested that the samples be re-extracted and analyzed using the lower reporting limits. Both results are provided in the previous table. Because of matrix interference the samples from Tire-Fire-3 and Tire-Fire-4 could not be analyzed using the lower limits.

Diesel Range Organics (DRO) EPA Method 8015B

Calscience estimated a reporting limit of 5.0 mg/kg for the DRO analysis. All of the samples with no detections had a reporting limit of 5.0 mg/kg. The reporting limits for the samples with detections ranged from 5.0 mg/kg to 100 mg/kg. The screening level for DRO was 83 mg/kg so the reporting limits were considered acceptable.

TPH-Motor Oil (TPH-MO) EPA Method 8015B (M)

Calscience estimated a reporting limit of 5.0 mg/kg for the TPH-MO analysis. All of the samples with no detections had a reporting limit of 25 mg/kg. The reporting limits for the samples with detections ranged from 25 mg/kg to 620 mg/kg. The screening level for TPH-MO was 370 mg/kg so the reporting limits were considered acceptable.

Gasoline Range Organics (GRO) EPA Method 8015B

Calscience estimated a reporting limit of 0.50 mg/kg for the GRO analysis. None of the samples had detections and the reporting limit for all of the samples was 0.50 mg/kg. The screening level for GRO was 83 mg/kg so the reporting limits were considered acceptable.

Semi-Volatile Organic Compounds (SVOCs) EPA Method 8270C

A total of 71 SVOCs were analyzed for this project. Six of the 71 SVOCs were detected in the samples. Screening levels were not available for 35 of the SVOCs. The screening levels for 20 of the SVOCs with screening levels were less than 1.00 mg/kg with a total of 26 SVOCs screening levels less than 5.00 mg/kg.

The reporting limits for Tire-Fire-1, Tire-Fire-2, and Tire-Fire-5 for the second analysis were significantly lower than those for Tire-Fire-3 and Tire-Fire-4 which could not be re-analyzed using the lower limits because they contained high concentrations of petroleum compounds. For the SVOCs detected, the reporting limits for dimethyl phthalate, naphthalene, and phenol exceeded the screening levels in some samples.

The table below shows the analytes for which the reporting limits exceeded the screening levels. The SVOC reporting limits for these analytes were considered acceptable because they were the lowest that the laboratory stated that they could achieve.

				Number of Samples for which the Reporting Limit Equals or Exceeds
		Screening	Range of	the Screening Level and for which
Analyte	Units	Level	Limits	Analyte
1,2,4-Trichlorobenzene	mg/kg	1.5	0.02 – 5.0	2
1,2-Dichlorobenzene	mg/kg	1.1	0.02 - 5.0	2
1,4-Dichlorobenzene	mg/kg	0.59	0.02 - 5.0	4
2,4,5-Trichlorophenol	mg/kg	0.18	0.02 - 5.0	5
2,4,6-Trichlorophenol	mg/kg	0.23	0.02 - 5.0	4
2,4-Dichlorophenol	mg/kg	0.30	0.02 - 5.0	4
2,4-Dimethylphenol	mg/kg	0.67	0.02 - 5.0	4
2,4-Dinitrotoluene	mg/kg	0.00039	0.02 - 5.0	16
2-Chlorophenol	mg/kg	0.012	0.02 - 5.0	16
2-Methylnaphthalene	mg/kg	0.25	0.02 - 5.0	4
Anthracene	mg/kg	2.8	0.02 - 5.0	1
Benzo (a) Anthracene	mg/kg	0.38	0.02 - 5.0	4
Benzo (a) Pyrene	mg/kg	0.038	0.02 - 5.0	7
Benzo (b) Fluoranthene	mg/kg	0.38	0.02 - 5.0	4
Benzo (k) Fluoranthene	mg/kg	0.38	0.02 - 5.0	4
Bis(2-Chloroethyl) Ether	mg/kg	0.0004	0.1 – 25	16
Bis(2-Chloroisopropyl)	mg/kg	0.00015	0.02 - 5.0	16
Dibenz (a,h) Anthracene	mg/kg	0.062	0.02 - 5.0	6
Diethyl Phthalate	mg/kg	0.035	0.01 – 5.0	6
Dimethyl Phthalate	mg/kg	0.035	0.01 – 5.0	6
Hexachlorobenzene	mg/kg	3.0	0.02 - 5.0	4
Hexachloroethane	mg/kg	3.0	0.02 - 5.0	1
Indeno (1,2,3-c,d) Pyrene	mg/kg	0.62	0.02 - 5.0	4
Naphthalene	mg/kg	1.3	0.02 - 5.0	2
Pentachlorophenol	mg/kg	3.0	0.2 – 25	4
Phenol	mg/kg	0.076	0.02 - 5.0	6

LIST OF SVOC ANALYTES FOR WHICH REPORTING LEVELS EXCEEDED THE SCREENING LEVEL

NOTES:

mg/kg Milligrams per kilogram.

Volatile Organic Compounds (VOCs) EPA Method 8260B

A total of 71 VOCs were analyzed for this project. Screening levels were not available for 32 of the VOCs. Four of the 71 VOCs were detected in the samples. The reporting limits for VOCs that were detected were lower than the screening levels. Two of the VOCs had reporting limits that were higher than the screening levels. The other reporting limits were less than the screening levels. The table below shows the analytes for which the reporting limits exceeded the screening levels. The VOC reporting limits for these analytes were considered acceptable because they were the lowest that the laboratory stated that they could achieve.

	<u> </u>			
				Number of Samples for
				which the Reporting Limit
				Equals or Exceeds the
			Range of	Screening Level and for
		Screening	Reporting	which there was no
Analyte	Units	Level	Limits	Detection of the Analyte
1,2-Dibromo-3-	ua/ka	4.5	12-65	5
Chloropropane	pg/kg	4.0	4.2 - 0.5	5
1.2-Dibromoethane	µq/kq	0.33	0.83 – 1.3	9

LIST OF VOC ANALYTES FOR WHICH REPORTING LEVELS EXCEEDED THE SCREENING LEVEL

NOTES:

µg/kg Micrograms per kilogram.

Metals by EPA Method 6020 (All metals except for mercury)

A total of 19 metals (excluding mercury) were analyzed for this project. There was no screening level available for magnesium. There were detections of all metals except mercury, selenium, silver, and thallium. The reporting limits for the 19 metals were all lower than the screening levels except for arsenic which had a reporting limit of 1.00 mg/kg which is higher than the screening level of 0.39 mg/kg. The metals reporting limits were considered acceptable. Although the reporting limit for arsenic exceeded the screening level this should not require further action because the reference metals sample contained 4.33 mg/kg of arsenic.

Mercury by EPA Method 7471A

The reporting limit for mercury was 0.0835 mg/kg which is well below the screening level of 1.3 mg/kg. There were no detections of mercury in the samples. The reporting limit for mercury was considered acceptable.

6.2 Review of Laboratory Reports

The laboratory analytical reports are included in Appendix C, Appendix D, and Appendix E. All of the analyses were conducted by Calscience. FES reviewed the laboratory analytical reports to determine if there were any data quality issues. The discussions below are based on a review of the quality control results.

Diesel Range Organics (DRO) EPA Method 8015B

There were no detections of DRO in the method blanks. Surrogate recoveries were within the acceptable range. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were higher than the acceptable range indicating a possible high bias in the DRO results. The RPD for the MS/MSD was within the acceptable range. The results for the DRO analyses were considered acceptable.

TPH-Motor Oil (TPH-MO) EPA Method 8015B (M)

There was no detection of TPH-MO in the method blanks. Surrogate recoveries were within the acceptable range. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were within the acceptable range. The RPD for the MS/MSD was 17% which is higher than the laboratory control limit of 15% for the first batch of samples. The results for the TPH-MO analyses were considered acceptable.

Gasoline Range Organics (GRO) EPA Method 8015B

There was no detection of GRO in the method blank. Surrogate recoveries were within the acceptable range. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were lower than the acceptable limit indicating a possible low bias in the GRO results. The RPD for the MS/MSD was within the acceptable range. The results for the GRO analyses were considered acceptable.

Semi-Volatile Organic Compounds (SVOCs) EPA Method 8270C

There were two analyses of samples Tire-Fire-1, Tire-Fire-2, and Tire-Fire-5 for SVOCs because the initial reporting limits were higher than requested. The initial samples from Tire-Fire-3 and Tire-Fire-4 were not reanalyzed because matrix interference prevented lowering of the reporting limits.

Initial Analysis of SVOCs

There were no detections of SVOCs in the method blank. Surrogate recoveries were within the acceptable range. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were within the acceptable range. The RPD for the MS/MSD for pentachlorophenol was 25% which is higher than the laboratory control limit of 22%. The results for the SVOC analyses were considered acceptable.

Second Analysis of Tire-Fire-1, Tire-Fire-2, and Tire-Fire-5 for SVOCs

There were no detections of SVOCs in the method blank. The surrogate recovery for p-Terphenyl-d14 was higher than the acceptable limit. All other surrogate recoveries were within acceptable limits. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were within the acceptable range for the initial analysis. The RPD (initial analysis) for the MS/MSD for pentachlorophenol was 25% which is higher than the laboratory control limit of 22%. There were no detections of pentachlorophenol in any of the samples. All other RPDs were within the acceptable limits. The results for the SVOC analyses were considered acceptable.

Third Analysis for SVOCs

There were no detections of SVOCs in the method blank. Surrogate recoveries were within the acceptable range except for p-Terpphenyl-d14 which had a higher than acceptable. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were within the acceptable range except for 4-Nitrophenol. The RPD for the MS/MSD for 4-Nitrophenol was 26% which is higher than the laboratory control limit of 20%. The results for the SVOC analyses were considered acceptable.

Volatile Organic Compounds (VOCs) EPA Method 8260B

There were no detections of VOCs in the method blank. Surrogate recoveries were within the acceptable range. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were within the acceptable range. The RPD for the MS/MSD for 1,2-Dichlorobenzene, p/m-Xylene, and o-Xylene were higher than the laboratory control limits for these analytes. There were no detections of these three analytes in the samples. The results for the VOC analyses were considered acceptable.

Metals by EPA Method 6020 (All metals except for mercury)

There were no detections of metals in the method blanks. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were within the acceptable range except for silver which had a higher recovery than the acceptable range. No RPDs were calculated for aluminum, magnesium, manganese, and zinc because of suspected matrix interference. The post digestion spike (PDS) analyses were within the acceptable recovery limits except for silver which had a higher recovery than the acceptable recovery limits except for silver which had a higher recovery than the acceptable limit. No recovery percentages were calculated for aluminum, copper (third analysis only), magnesium, manganese,

and zinc because of suspected matrix interference of these analytes. The results for the metals analyses were considered acceptable.

Mercury by EPA Method 7471A

There was no detection of mercury in the method blanks. The laboratory control sample and laboratory control sample duplicate were within acceptable recovery limits and within relative percent difference limits. The matrix spike and matrix spike duplicate recoveries were within the acceptable range. The results for the mercury analyses were considered acceptable.

6.3 Assessment of Field Variability of Co-Located Soil Samples

Two co-located soil samples were collected for this project. The co-located samples were created by placing soil from the same locations in a clean glass mixing bowl and homogenizing the sample with gloved hands. Soil from the homogenized sample was placed into the various containers and labeled with a different sample identification. No co-located sample was collected for VOC analysis because volatilization can occur during mixing. The laboratory homogenized the individual samples prior to extraction and analysis.

The equation for calculating the RPD is:

 $\begin{aligned} \text{RPD} &= |X1 - X2| \div [(X1 + X2)/2] \times 100 \\ \text{RPD} &= \text{Relative Percent Difference (as \%)} \\ \text{X1 - X2} &= \text{Absolute value (always positive) of X1 - X2} \\ &= \text{X1} &= \text{Original sample concentration} \end{aligned}$

X2 = Duplicate sample concentration

A RPD of 35% or less is generally considered acceptable for soil samples. The RPDs for the colocated samples with detections in both samples are shown in the two tables on the following page.

SUMMARY OF RELATIVE PERCENT DIFFERENCES FOR ORGANIC CHEMICALS IN THE CO-LOCATED SOIL SAMPLES FROM THE APRIL 9, 2013 AND JULY 24, 2013 SAMPLING EVENTS

Sample ID	Date	TPH- Diesel With Silica Gel (mg/kg)	TPH- Motor Oil With Silica Gel (mg/kg)	Bis(2- Ethylhexyl) Phthalate (mg/kg)	Dimethyl Phthalate (mg/kg)	Naphthalene (mg/kg)	Pyridine (mg/kg)
Tire-Fire-1-0.0'-0.1'	4/9/13	25	86	0.14	0.055	0.024	0.031
Tire-Fire-5-0.0'-0.1' (Duplicate of Tire-Fire-1-0.0'-0.1')	4/9/13	23	84	0.042	0.074	0.030	0.040
Relative Percent Different	ence (RPD)	8.3%	2.4%	107.7%	29.5%	22.2%	25.4%
Tire-Fire-3-(1.5')	7/24/13	13	81	<0.010	<0.010	<0.020	<0.020
Tire-Fire-8-(1.3') (Duplicate of Tire-Fire-3-(1.5')	7/24/13	15	88	<0.010	<0.010	<0.020	<0.020
Relative Percent Different	ence (RPD)	14.3%	8.3%	NA	NA	NA	NA

NOTES:

107.7% RPDs greater than or equal to 35% shown in red bold.

- TPH Total Petroleum Hydrocarbon
- mg/kg milligrams per kilogram

TPH-Diesel and TPH-Motor Oil reported after silica gel cleanup.

SUMMARY OF RELATIVE PERCENT DIFFERENCES FOR METALS IN THE CO-LOCATED SOIL SAMPLES FROM THE APRIL 9, 2013 AND JULY 24, 2013 SAMPLING EVENTS

Sample ID	Date	AI (mg/kg)	Ba (mg/kg)	Cr (mg/kg)	Co (mg/kg)	Cu (mg/kg)	Pb (mg/kg)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	V (mg/kg)	Zn (mg/kg)
Tire-Fire-1-0.0'-0.1'	4/9/13	7,920	31.4	27.1	19.4	82.1	30.0	8,210	349	32.4	24.5	1,440
Tire-Fire-5-0.0'-0.1' (Duplicate of Tire-Fire-1-0.0'-0.1')	4/9/13	6,470	28.2	24.6	23.7	97.3	23.3	6,620	311	29.1	20.4	1,950
Relative Percent Dit (RPD)	fference	8.3%	20.2%	10.7%	9.7%	20.0%	16.9%	25.1%	21.4%	11.5%	10.7%	18.3%
Tire-Fire-3-(1.5')	7/24/13	11,800	12.1	12.2	14.4	204	<1.00	12,400	358	28.3	41.0	55.1
Tire-Fire-8-(1.3') (Duplicate of Tire-Fire-3-(1.5')	7/24/13	14,100	14.5	14.5	17.7	240	1.04	15,600	414	39.2	47.6	64.4
Relative Percent Dit (RPD)	fference	17.8%	18%	17.2%	20.6%	16.2%	NA	22.9%	1.5%	32.3%	14.9%	15.6%

NOTES:

mg/kg milligrams per kilogram

All of the RPDs were less than 35% except for Bis(2-Ethylhexyl) Phthalate, which was 107.7% which is higher than the generally accepted 35% for soil samples. The concentration of Bis(2-Ethylhexyl) Phthalate in this co-located sample was well under the screening level of 35 mg/kg. Since all of the other RPDs were within the 35% limit it appears that the homogenization process was generally adequate except for Bis(2-Ethylhexyl) Phthalate. It is possible that a more rigorous homogenization and the use of a splitting device would have produced a lower RPD.

6.4 Equipment Blanks

No equipment blanks were collected because the samples were collected from near the surface with no contact between the equipment and the soil collected for the sample.

6.5 Investigation Derived Wastes

During the initial sampling on April 9, 2013 there were no obvious indications of contamination below the surface materials (which were scraped to the side of the sample locations) so all solid investigation derived wastes were placed back in the holes where they were collected. During the second (July 18, 2013) and third round (July 24, 2013) of sample collection soils were placed back into the holes. These materials will need to be removed during the cleanup of the Subject Property. No water was used for decontamination.

7.0 MEASUREMENT QUALITY OBJECTIVES (MQOs)

Data assessment criteria are used to evaluate the quality of the field sampling and laboratory performance for the sampling event, and are expressed in terms of analytical precision, accuracy, representativeness, completeness, and comparability, which are described below.

7.1 Precision

Precision is the degree of mutual agreement between or among independent measurements of a similar property usually reported as relative percent difference (RPD). This indicator relates to the analysis of duplicate laboratory samples, duplicate matrix spikes, and field duplicates (co-located samples). An RPD of <20% for water and <35% for soil, depending upon the chemical being analyzed is generally considered acceptable.

RPDs for the co-located soil samples ranged from 2.4% to 107.7%. The only analyte that exceeded the 35% was Bis(2-Ethylhexyl) Phthalate with a RPD of 107.7%.

Laboratory precision was assessed using laboratory control samples and laboratory control sample duplicates (LCS/LCSD) and matrix spikes and matrix spike duplicates (MS/MSD). Precision was expressed in terms of RPD between the values resulting from duplicate analysis. The results of these analyses are described in Section 6.2.

7.2 Accuracy/Bias

Accuracy is the degree of agreement of a measurement with a known or true value. To determine accuracy, a laboratory value was compared to a known or true concentration. Accuracy for this project was determined by laboratory control samples and laboratory control sample duplicates and matrix spikes and matrix spike duplicates. Accuracy is expressed as a bias (high or low) and is determined by calculating percent recovery (%R) from MSs/MSDs and LCSs/LCSDs.

LCS %R indicates accuracy relevant to an analytical batch lot and is a measure of analytical accuracy conditions independent of samples and matrices. MS/MSD and surrogate spike %Rs indicate accuracy relevant to a unique sample matrix. The %R of an analyte, and the resulting degree of accuracy expected for the analysis of spiked samples, are dependent upon the sample matrix, method of analysis, and the compound or element being measured. The concentration of the analyte relative to the detection limit of the method also is a significant factor in determining the accuracy of the measurement.

QC samples that were used in this investigation to measure accuracy/bias include the following:

• Matrix spikes - To monitor sample preparation/analysis methodology, as well as, to represent the actual sample matrix itself; and

• Standard reference materials and/or laboratory control samples to monitor sample preparation/analysis methodology and often of a similar media (such as water, soil, sediment) as the field samples.

7.3 Representativeness

Representativeness is the expression of the degree to which data accurately and precisely represent a characteristic of an environmental condition or a population. It relates both to the area of interest and to the method of taking the individual sample. The principal study question for this project was whether the Subject Property contains contaminated soils above concentrations regarded as safe for reuse of the Subject Property.

This project collected judgmental samples in areas where there appeared to be contamination from the burning of tires and the mobile home. Two of the samples, Tire-Fire-6 and Tire-Fire-7 were collected from areas that were down slope of the principal sampling area but which did not appear to have burned material or debris. The reference metals sample was collected upslope and beyond the area known to be contaminated.

Factors that affect representativeness include:

- Use of appropriate sampling procedures, including equipment and equipment decontamination and sample holding temperatures;
- Use of appropriate analytical methods for the required parameters and project reporting limits; and
- Analysis of samples within the required holding times.

The portion of each collected sample that was chosen for analysis also affects sample representativeness. The laboratory homogenized all samples prior to taking aliquots for analysis to ensure that the reported results were representative of the sample received.

This investigation used sampling and analytical methods for ensuring the data collected reflects the environmental conditions in the areas sampled. To further ensure the representativeness of the data collected, chain-of-custody procedures, sample preservation, and maximum sample holding times were followed.

QC samples that were used in this investigation to quantitatively measure representativeness included the use of temperature blanks. The temperatures were recorded upon receipt of the samples by the laboratories to serve as a QC check for temperature-related sample preservation. All samples (except the samples collected on July 18, 2013 which were not analyzed) were received within the acceptance criteria for samples requiring preservation at $4^{\circ}C +/-2^{\circ}C$.

A qualitative measure of representativeness included verification that documented sample collection and analytical methods (including sample handling, chain-of-custody procedures, sample

preservation, and sample holding times protocols) were followed to ensure that the data reflects the environmental conditions.

7.4 Comparability

Comparability expresses the confidence with which one dataset can be compared to another. The use of methods from EPA or "Standard Methods" or from some other recognized sources allows the data to be compared facilitating evaluation of trends or changes at a site. Comparability also refers to the reporting of data in comparable units so direct comparisons are simplified. Comparability during analysis is dependent upon analytical methods, detection limits, laboratories, units of measure, and sample preparation procedures. Comparability is determined on a qualitative rather than quantitative basis. For this project, comparability of all data collected was ensured by adherence to standard sample collection procedures, standard field measurement procedures, and standard analysis and reporting methods, including consistent units.

7.5 Completeness

Completeness is expressed as percent of valid usable data actually obtained compared to the amount that was expected.

A total of 15 soil samples (excluding the co-located samples) were collected from the Subject Property. One of the samples was collected from an area not expected to have been impacted by activities at the Subject Property to determine reference metals concentrations. Two additional samples were collected from areas beyond visible contamination on July 24, 2013. The Sampling and Analysis Plan called for the collection of nine soil samples from the original locations. The locations sampled on July 24, 2013 included two new locations, Tire-Fire-6 and Tire-Fire-7. The percent completeness is 100% based on the number of samples in the SAP. The additional samples collected on July 24, 2013 were not included in the SAP.

7.6 Sensitivity

Laboratory methods utilized in the assessment were sensitive enough to be able to quantify the parameters of concern at or below the screening levels except for the analytes described in Section 6.1. A table listing analytes for which the reporting limits were higher than the screening levels is provided in Section 6.1.

8.0 DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS

8.1 Sample Locations

Fifteen samples (excluding the co-located samples) from seven locations were collected from the Subject Property. The samples were collected from various intervals with a maximum depth of 1.5 feet bgs.

The following sample locations were from areas expected to contain some contamination:

- Tire-Fire-1 (approximate center of area containing melted metal and burned tires);
- Tire-Fire-2 (area that contained surface debris but not significantly burned);
- Tire-Fire-3 (eastern footprint of former mobile home);
- Tire-Fire-4 (western footprint of former mobile home);
- Tire-Fire-5 (field duplicate of Tire-Fire-1-0.0'-0.1'); and
- Tire-Fire-8 (field duplicate of Tire-Fire-3-(1.5').

The following sample locations were from areas down slope of Tire-Fire-1, Tire-Fire-2, Tire-Fire-3, and Tire-Fire-4:

- Tire-Fire-6 (approximately 29 feet south of Tire-Fire-3 and approximately 16 feet south of the concrete block wall; and
- Tire-Fire-7 (approximately 21 feet southwest of Tire-Fire-4 just beyond the end of the concrete block wall).

The following sample location was upslope of the other samples on the slope between State Highway 96 and the relatively flat area all of the other samples were collected:

• Tire-Fire-Background-Metals-0.0'-0.1' (collected to provide reference metals concentrations from an area not expected to be significantly contaminated from activities at the Subject Property).

8.2 Tire-Fire-1

Tire-Fire-1 Discussion

Tire-Fire-1 was located near the center of an area of burned tires (Appendix B, Photos 2, 3, and 4). The surface material which appeared to consist of burned rubber and melted metal was scraped off to get to the soil underneath. The material directly below the residue was mostly gravel-sized (~ 0.75 to 2.9 inches) schist fragments. A total of three samples were collected at this location from the following depths:

- Tire-Fire-1-0.0'-0.1' was collected on April 9, 2013 from 0.0'-0.1' bgs;
- Tire-Fire-1-0.5'-0.6' was collected on April 9, 2013 from 0.5'-0.6' bgs; and
- Tire-Fire-1-(1.2') was collected on July 24, 2013 from 1.2' bgs.

Diesel Range Organics and TPH-Motor Oil were only detected in the sample collected from 0.0'-0.1' bgs at this location. The detections were below the screening levels. Gasoline Range Organics

and VOCs were not detected at this location. Several SVOCs were detected at Fire-Fire-1 with only dimethyl phthalate exceeding the screening level (based on the actual reporting limits). Of the 12 metals detected at Tire-Fire-1 only arsenic and zinc exceeded the screening levels. The only analyte detected in the sample collected from 0.5'-0.6' bgs above the screening level (based on the actual reporting limits) was dimethyl phthalate. There were no detections of SVOCs in the sample collected from 1.2' bgs on July 24, 2013.

Tire-Fire-1 Conclusion

The only analytes that exceeded the screening levels (based on the actual reporting limits) at this location were dimethyl phthalate, arsenic, and zinc. The concentration of arsenic in the 0.0'-0.1' bgs sample of 1.01 mg/kg is less than the reference metals sample which was 4.33 mg/kg. The high concentration of zinc in the shallow sample is probably due to the burning of the tires and wheels at this location. The concentration of zinc (72.9 mg/kg) in the 0.5'-.6' bgs sample is close to the reference concentration which for zinc was 60.6 mg/kg. The only analyte detected in the 0.5'-0.6' bgs sample at a concentration of 0.077 mg/kg was dimethyl phthalate exceeding the screening level of 0.035 mg/kg. There were no detections of SVOCs in the 1.2' bgs sample. The vertical delineation of contamination at this location has been achieved.

Tire-Fire-1 Recommendations

FES recommends the removal and offsite disposal of the first 1.2 feet of soil in the area of Tire-Fire-1 where there is evidence of burned material.

8.3 Tire-Fire-2

Tire-Fire-2 Discussion

Tire-Fire-2 was located in an area that did not appear to have surface contamination (Appendix B, Photos 5 and 6) but was in an area where debris was present. The subsurface material consisted of approximately 0.1 feet of sand underlain by gravel-sized schist fragments. A total of three samples were collected at this location from the following depths:

- Tire-Fire-2-0.0'-0.1' was collected on April 9, 2013 from 0.0'-0.1' bgs;
- Tire-Fire-2-0.5'-0.6' was collected on April 9, 2013 from 0.5'-0.6' bgs; and
- Tire-Fire-2-(1.3') was collected on July 24, 2013 from 1.3' bgs.

Diesel Range Organics and TPH-Motor Oil were detected in the 0.0'-0.1' and the 0.5'-0.6' bgs samples at this location but the concentrations were below the screening levels. Gasoline Range Organics were not detected at this location. There was only one detection of VOCs (acetone) at this location in the 0.0'-0.1' bgs sample at a concentration of 0.067 mg/kg which was below the screening level of 0.5 mg/kg. Two SVOCs were detected at Tire-Fire-2 with only the dimethyl phthalate concentration (0.53 mg/kg) exceeding the screening level of 0.035 mg/kg. Of the 12 metals detected at Tire-Fire-2 only arsenic exceeded the screening level. The only analyte

detected in the 0.5'-0.6' bgs sample above the screening level was dimethyl phthalate. There were no detections of SVOCs in the sample collected from 1.3' bgs on July 24, 2013.

Tire-Fire-2 Conclusion

The only analytes that exceeded the screening levels (based on the actual reporting limits) at this location were dimethyl phthalate and arsenic. The concentration of arsenic in the 0.0'-0.1' bgs sample (1.04 mg/kg) is less than the reference metals sample which for arsenic was 4.33 mg/kg. The only analyte detected in the 0.5'-0.6' bgs sample exceeding the screening level was dimethyl phthalate at a concentration of 0.077 mg/kg. There were no detections of SVOCs in the 1.3' bgs sample. The vertical delineation of contamination at this location has been achieved.

Tire-Fire-2 Recommendations

FES recommends the removal and disposal offsite of the first 1.3 feet of soil in the area of Tire-Fire-2 where there is evidence of debris.

8.4 Tire-Fire-3

Tire-Fire-3 Discussion

Tire-Fire-3 was located in an area that was probably within the footprint of the burned mobile home as shown on Figure 4 and Figure 5. The sample location was between two metal sheets and the surface consisted of approximately ½" melted metal and burned debris (Appendix B, Photos 7 and 8). The subsurface material consisted of approximately 0.1 feet of sand underlain by gravel-sized schist fragments. A total of three samples were collected at this location from the following depths:

- Tire-Fire-3-0.0'-0.1' was collected on April 9, 2013 from 0.0'-0.1' bgs;
- Tire-Fire-3-0.5'-0.6' was collected on April 9, 2013 from 0.5'-0.6' bgs; and
- Tire-Fire-3-(1.5') was collected on July 24, 2013 from 1.5' bgs.

Diesel Range Organics and TPH-Motor Oil were detected in the 0.0'-0.1' and 0.5'-0.6' bgs samples at this location at concentrations significantly above the screening levels (up to 12,000 mg/kg for TPH-Motor Oil). The concentrations of DRO and TPH-MO were below the screening levels in the sample collected from 1.5' bgs. Gasoline Range Organics were not detected at this location. There were no detections of SVOCs at Fire-Fire-3 but the reporting limits exceeded the screening levels for numerous analytes in the upper two samples as described in Section 6.1. There were no detections (using lower detection limits) of SVOCs in the sample collected from 1.5' bgs. There were two detections of VOCs (acetone and 2-Butanone) which were below the screening levels. Of the 14 metals detected at Tire-Fire-3 six (arsenic, cadmium, copper, lead, nickel, and zinc) exceeded the screening levels. Only arsenic and nickel exceeded the screening levels in the sample collected from 0.5'-0.6' bgs. All of the metals detected in the sample collected from 1.5' bgs were below the screening levels.

Tire-Fire-3 Conclusion

The analytes that exceeded the screening levels (based on the actual reporting limits) at this location were DRO, TPH-MO, arsenic, cadmium, copper, lead, nickel, and zinc. The concentration of arsenic (2.20 mg/kg) in the 0.5'-0.6' bgs sample is less than the reference metals concentration of 4.33 mg/kg for the Subject Property. The concentrations of DRO and TPH-MO were under the screening levels in the sample collected from 1.5' bgs. There were no detections of SVOCs in the sample collected from 1.5' bgs and all of the metals concentrations were below the screening level at this depth.

Tire-Fire-3 Recommendations

FES recommends the removal and disposal offsite of the first 1.5 feet of soil within and approximately 10 feet beyond the footprint of the former mobile home including the area between the former mobile home and the concrete block wall to the south (Figure 5) where there is evidence of burned material and other debris.

8.5 Tire-Fire-4

Tire-Fire-4 Discussion

Tire-Fire-4 was located in an area that was probably within the footprint of the burned mobile home as shown on Figure 4 and Figure 5. The sample location was in an area of burned material and debris and the surface consisted of approximately 1" melted metal and burned debris (Appendix B, Photos 9 and 10). The subsurface material consisted of approximately 0.1 feet of sand underlain by gravel-sized schist fragments. A total of three samples were collected at this location from the following depths:

- Tire-Fire-4-0.0'-0.1' was collected on April 9, 2013 from 0.0'-0.1' bgs;
- Tire-Fire-4-0.5'-0.6' was collected on April 9, 2013 from 0.5'-0.6' bgs; and
- Tire-Fire-4-(1.0') was collected on July 24, 2013 from 1.0' bgs.

Diesel Range Organics and TPH-Motor Oil were detected in the 0.0'-0.1' and 0.5'-0.6' bgs samples. The sample from 0.5'-0.6' bgs exceeded the screening levels. Gasoline Range Organics were not detected at this location. There were no detections of SVOCs at Fire-Fire-4 but the reporting limits exceeded the screening levels for numerous analytes in the upper two samples as described in Section 6.1. There were no detections (using lower detection limits) of SVOCs in the sample collected from 1.0' bgs. Acetone was detected in the 0.0'-0.1' and 0.5'-0.6' bgs samples with concentrations below the screening levels. Four of the 14 metals detected at Tire-Fire-4 (arsenic, cadmium, copper, and zinc) exceeded the screening levels. Arsenic was the only metal in the 1.0' bgs sample that exceeded the screening level.

Tire-Fire-4 Conclusion

The analytes that exceeded the screening levels (based on the actual reporting limits) at this location were DRO, TPH-MO, arsenic, cadmium, copper, and zinc. The concentration of arsenic (2.54 mg/kg) in the 0.5'-0.6' bgs sample is less than the reference concentration sample which for arsenic was 4.33 mg/kg. There were no detections of DRO, TPH-MO, or SVOCs in the sample collected from 1.0' bgs.

Tire-Fire-4 Recommendations

FES recommends the removal and disposal offsite of the first 1.5 feet of soil within and approximately 10 feet beyond the footprint of the former mobile home including the area between the former mobile home and the concrete block wall to the south (Figure 5) where there is evidence of burned material and other debris.

8.6 Tire-Fire-6

Tire-Fire-6 Discussion

Tire-Fire-6 was located in an area south of Tire-Fire-3 that did not have burned material or debris as shown on Figure 4 and Figure 5. The sample location was intended to be outside of the area of known contamination. (Appendix B, Photo 13). The subsurface material consisted of approximately 0.1 feet of silt and gravel. One sample was collected at this location from 0.0' to 0.1 feet on July 24, 2013. The sample collected on July 18, 2013 was not analyzed.

Tire-Fire-6 Conclusion

There were no detections of any analytes above the screening levels.

Tire-Fire-6 Recommendations

FES recommends that no further action is necessary in the vicinity of Tire-Fire-6.

8.7 Tire-Fire-7

Tire-Fire-7 Discussion

Tire-Fire-7 was located at the end of the concrete block wall as shown on Figure 4 and Figure 5 and in Appendix B, Photo 14. The sample location was chosen because it was lower than the former mobile home and where runoff from the contaminated area may have been concentrated (Appendix B, Photo 14). The subsurface material consisted of approximately 0.1 feet of silt and charcoal fragments. One sample was collected at this location from 0.0' to 0.1 feet on July 24, 2013. The only analytes that exceeded the screening levels were arsenic, copper, and zinc. The sample collected on July 18, 2013 was not analyzed.

Tire-Fire-7 Conclusion

The concentrations of arsenic, copper, and zinc exceeded the screening levels and were higher than the concentrations in the reference metals sample. There were small pieces of charcoal in the material at the surface which probably indicate that this area was burned. There may have been debris in this area as evidenced by the blanket and other items to the southwest of the sample location. It is possible that there has been some migration of metals by surface water as evidenced by the elevated concentrations of arsenic, copper, and zinc at Tire-Fire-7. The potential transport of metals may have occurred through dissolved metals being precipitated down slope or by the transport of soil particles from the metals-impacted areas of the Subject Property.

Tire-Fire-7 Recommendations

FES recommends the following at Tire-Fire-7:

- Collection of a deeper sample to achieve vertical delineation;
- Clearing of brush to the southwest of this sample point to see if there is evidence of debris in the area; and
- Collection of two additional samples (a shallow and a deep from a single location) to the southwest of Tire-Fire-7 to achieve horizontal delineation.

8.8 Human and Ecological Risk

Human Risk

The concentrations of DRO, TPH-Motor Oil, dimethyl phthalate, arsenic, cadmium, copper, lead, nickel, and zinc are considered a potential human risk if impacted soils are not removed from the Subject Property. Prior to redevelopment the areas where these analytes exceed the screening level will need to be removed from the Subject Property and disposed of at an appropriate permitted facility. Because some of the SVOCs and VOCs had reporting limits that exceeded the screening levels it is possible that these compounds could be present but undetected at the Subject Property. By removing the soils known to be contaminated (to the depth of the deepest sample) as recommended it seems less likely that undetected SVOCs exceeding the screening levels would remain.

Ecological Risk

The concentrations of DRO, TPH-Motor Oil, dimethyl phthalate, arsenic, cadmium, copper, lead, nickel, and zinc at the Subject Property are considered a potential ecological risk if impacted soils are not removed from the Subject Property. Prior to redevelopment the areas where these analytes exceed the screening level will need to be removed from the Subject Property and disposed of at an appropriate permitted facility. Because some of the SVOCs and VOCs had reporting limits that exceeded the screening levels it is possible that these compounds could be present but undetected at the Subject Property. By removing the soils known to be contaminated (to the depth of the

deepest sample) as recommended it seems less likely that undetected SVOCs exceeding the screening levels would remain. The following species are listed by the United States Fish and Wildlife Service and the National Marine Fisheries Service for the Weitchpec quadrangle that includes the Subject Property and the surrounding eight quadrangles:

Туре	Listing Agency	Common Name	Category	Habitat Designated
	NMFS	green sturgeon	Т	yes
	NMFS	CA coastal Chinook salmon	Т	yes
Fish	US FWS	tidewater goby	E	yes
	NMFS	Northern California steelhead	Т	yes
	NMFS	S. OR/N. CA coho salmon	Т	yes
	US FWS	marbled murrelet	Т	yes
Birds	US FWS	Western yellow-billed cuckoo	С	no
	US FWS	northern spotted owl	Т	yes
Mammals	US FWS	fisher, West Coast DPS	С	no

US FWS US Fish and Wildlife Service

NMFS National Marine Fisheries Service

- T Threatened species
- C Candidate species
- DPS Distinct Population Segment

8.9 Principal Study Questions

We have performed a Phase II environmental site assessment of the property located at Yurok Tribe Assignment number 530-053-010-73 on Highway 96 approximately one mile east of Weitchpec, CA in conformance with the scope and limitations of ASTM Practice E 1903-11 and for the following objectives developed pursuant to section 5.1 of ASTM Practice E 1903-11.

- assess and evaluate the recognized environmental conditions identified in the Phase I ESA conducted by the YTEP in 2012; and
- provide sufficient information regarding the presence or absence of contamination at the Site.

The principal study questions were whether the Subject Property contains contaminated soils from the unauthorized burning of tires and a former residence above concentrations regarded as safe for use of the Subject Property?

The alternative actions that could result from resolution of the principal study questions include:

- If contamination is not identified over allowable levels the Subject Property can be cleaned up and the Yurok Tribe can proceed with redevelopment of the Subject Property; and
- If contamination is identified over allowable levels, additional assessment and/or cleanup may be necessary prior to redevelopment and use of the Subject Property.
- If contamination is limited to the areas sampled; and
- Additional assessment and cleanup will be necessary prior to redevelopment.

This assessment has concluded that contamination is present over allowable levels in the area where tires were burned, in the area of the former residence, and in the vicinity of Tire-Fire-7. These areas will require excavation and disposal of soil after the surface debris is removed. Additional assessment is necessary to the southwest of Tire-Fire-7. Confirmation sampling will be required at the time of the excavation to ensure that the horizontal extent of contamination has been removed and that remaining soils do not contain contaminants above the screening levels.

Reporting Limits Exceeding Screening Levels for SVOCs and VOCs

As listed in Section 8.0 there were 23 instances where the reporting limits exceeded the screening levels for SVOCs. Only one SVOC (dimethyl phthalate) was detected in the deeper samples from the initial four sampling locations and the concentration was below the screening level. It is possible that some SVOCs may be present at the Subject Property at concentrations exceeding the screening levels but below the laboratory reporting limits. By removing the soils known to be contaminated (to the depth of the deepest sample) as recommended it seems less likely that SVOCs exceeding the screening levels would remain.

As listed in Section 8.0 there were two instances where the reporting limits exceeded the screening levels for VOCs. The two compounds were 1,2-Dibromo-3-Chloropropane and 1,2-Dibromoethane. Although all of the VOCs that were detected at the Subject Property were below the screening levels, it is possible that the two VOCs may be present at the Subject Property at concentrations exceeding the screening levels. By removing the soils known to be contaminated (to the depth of the deepest sample) as recommended it seems less likely that VOCs exceeding the screening levels would remain.
9.0 REFERENCES

ASTM E1903 – 11, 2011, Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.

California Regional Water Quality Control Board San Francisco Bay Region, 2008, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, INTERIM FINAL-November 2007 (Revised May 2008).

Wagner and Saucedo, 1987, *Geologic Map of the Weed Quadrangle, California*, California Division of Mines and Geology.

Yurok Tribe Environmental Program, 2012, *Phase I Environmental Site Assessment Report for: Yurok Tribe Assignment Number 530-053-010-73, Located on: Near Saints Rest, Highway 96, in Weitchpec, California, APN: 530-053-010-000,* September 17. TABLES

TABLE 1 SUMMARY OF CHEMICAL ANALYSES OF SOIL SAMPLES FOR PETROLEUM, SVOCs, AND VOCs **TIRE FIRE PROPERTY**

Humboldt County, California

	Date Sampled	Diesel Range Organics	TPH-Motor Oil	Gasoline Range Organics	Bis(2-Ethylhexyl) Phthalate	Butyl Benzyl Phthalate	Dimethyl Phthalate	Naphthalene	Phenol	Pyridine	Acetone	Benzene	2-Butanone (Methyl Ethyl Ketone)	Toluene
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample ID	Residential Screening Level	83 ^a	370 ^a	83 ª	35 ª	256 ^b	0.035 ª	1.3 ª	0.076 ª	78.2 ^b	0.5 ^a	0.044 ^a	3.9 ª	2.9 ª
lire-Fire-1-0.0'-0.1'	09-Apr-13	25 '	86 '	<0.50	<0.50 / 0.14 ²	<0.50 / 0.02 2	<0.50 / 0.055 2	<0.50 / 0.024 ²	<0.50 / 0.023 ²	<0.50 / 0.031 ²	<0.065	<0.0013	<0.026	<0.0013
Tire-Fire-1-0.5'-0.6'	09-Apr-13	<5.0	<25	<0.50	<0.50 / <0.014 2	<0.50 / <0.014 2	<0.50 / 0.077 ²	<0.50 / <0.027 2	<0.50 / <0.027 2	<0.50 / <0.027 2	<0.042	<0.00083	<0.017	<0.00083
Tire-Fire-1-(1.2')	24-Jul-13				<0.010	<0.010	<0.010	<0.020	<0.020	<0.020				
Tire-Fire-2-0.0'-0.1'	09-Apr-13	64 ¹	99 ¹	<0.50	<0.50 / 0.042 ²	<0.50 / <0.016 ²	0.50 / 0.091 2	<0.50 / <0.031 2	<0.50 / <0.031 2	<0.50 / <0.031 ²	0.067	<0.00084	<0.017	<0.00084
Tire-Fire-2-0.5'-0.6'	09-Apr-13	36 ¹	170 ¹	<0.50	<0.50 / <0.026 2	<0.50 / <0.026 2	0.53 / 0.091 ²	<0.50 / <0.053 2	<0.50 / <0.053 2	<0.50 / <0.053 2	<0.047	<0.00095	<0.019	<0.00095
Tire-Fire-2-(1.3')	24-Jul-13				<0.010	<0.010	0.011	<0.020	<0.020	<0.020				
Tire-Fire-3-0.0'-0.1'	09-Apr-13	6,300 ¹	12,000 ¹	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.150	<0.00090	0.035	<0.00090
Tire-Fire-3-0.5'-0.6'	09-Apr-13	1,000 ¹	4,400 ¹	<0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.100	< 0.00096	<0.019	<0.00096
Tire-Fire-3-(1.5')	24-Jul-13	13 ¹	81 ¹		<0.010	<0.010	<0.010	<0.020	<0.020	<0.020				
Tire-Fire-4-0.0'-0.1'	09-Apr-13	31 ¹	180 ¹	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.110	<0.00087	<0.017	<0.00087
Tire-Fire-4-0.5'-0.6'	09-Apr-13	220 ¹	930 ¹	<0.50	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	0.052	<0.00088	<0.018	<0.00088
Tire-Fire-4-(1.0')	24-Jul-13	<5.0	<25		<0.010	<0.010	<0.010	<0.020	<0.020	<0.020				
Tire-Fire-5-0.0'-0.1' (Duplicate of Tire-Fire-1-0.0'-0.1')	09-Apr-13	23 ¹	84 ¹	<0.50	2.8 / 0.042 ²	<0.50 / <0.013 ²	<0.50 / 0.074 ²	<0.50 / 0.030 ²	<0.50 / <0.027 2	<0.50 / 0.040 ²	0.160	0.0027	0.026	0.0018
Tire-Fire-6-(0.0'-0.1')	24-Jul-13	14 ¹	150 ¹		0.16	0.23	<0.079	<0.16	<0.16	<0.16				
Tire-Fire-7-(0.0'-0.1')	24-Jul-13	33 ¹	170 ¹		0.27	<0.10	<0.10	<0.20	<0.20	<0.20				
Tire-Fire-8-(1.3') (Duplicate of Tire-Fire-3-(1.5'))	24-Jul-13	15 ¹	88 ¹		<0.010	<0.010	<0.010	<0.020	<0.020	<0.020				
Tire-Fire-Background-Metals-0.0'-0.1'	09-Apr-13													

Notes:

25 Bold indicates a result that exceeds the detection limit.

6,300 Red bold indicates a result that exceeds a screening level.

-- Not analyzed.

mg/kg milligrams per kilogram or parts per million

^a Table A Environmental Screening Levels (ESLs) Shallow Soils (<3m bgs) Groundwater is Current or Potential Source of Drinking Water. California Regional Water Quality Control Board San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, November 2007, revised May 2008. The environmental screening level for TPH (residual fuels) was applied to motor oil.

^b USEPA - Online RSL Calculator - Resident Risk-Based Screening Levels (RSL) for Soil. http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

¹ The laboratory reported that "The chromatographic pattern was inconsistent with the profile of the reference fuel standard."

² SVOCs were initially analyzed on 4-15-13. The laboratory was asked to reanalyze because the reporting limits from the 4-15-13 analyses were higher than requested. The lab reanalyzed samples Tire-Fire-1, Tire-Fire-2, and Tire-Fire-5 on 4-24-13 but stated that "The reporting limit is elevated resulting from matrix interference." for samples Tire-Fire-3 and Tire-Fire-4 so they did not reanalyze them. The results for both analysis are shown for Tire-Fire-1, Tire-Fire-2, and Tire-Fire-5.

TABLE 2 SUMMARY OF CHEMICAL ANALYSES OF SOIL SAMPLES FOR METALS TIRE FIRE PROPERTY

Humboldt County, California

	Date Sampled	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample ID	Residential Screening Level	77,400 ^a	6.3 ^D	0.39 0	750 ^o	4.0 ^b	1.7 ^o	2,500 °	40 ^b	230 0	200 0	NA	1,800 ^a	1.3 "	40 ^b	150 ^o	10 ^D	20 "	1.3 [°]	160 "	600 ^b
Tire-Fire-1-0.0'-0.1'	09-Apr-13	7,920	<2.00	1.01	31.4	<1.00	<1.00	27.1	19.4	82.1	30.0	8,210	349	<0.0835	<1.00	32.4	<1.00	<1.00	<1.00	24.5	1,440
Tire-Fire-1-0.5'-0.6'	09-Apr-13	8,810	<2.00	<1.00	9.63	<1.00	<1.00	31.8	12.4	146	<1.00	8,990	604	<0.0835	<1.00	27.7	<1.00	<1.00	<1.00	27.1	72.9
Tire-Fire-1-(1.2')	24-Jul-13																				
Tire-Fire-2-0.0'-0.1'	09-Apr-13	9,020	<2.00	1.04	58.4	<1.00	<1.00	24.5	10.5	102	19.9	7,720	335	<0.0835	<1.00	30.3	<1.00	<1.00	<1.00	24.7	429
Tire-Fire-2-0.5'-0.6'	09-Apr-13	9,680	<2.00	<1.00	11.8	<1.00	<1.00	28.1	13.8	181	1.03	10,800	402	< 0.0835	<1.00	28.3	<1.00	<1.00	<1.00	32.5	48.4
Tire-Fire-2-(1.3')	24-Jul-13																			'	
Tire-Fire-3-0.0'-0.1'	09-Apr-13	10,800	4.43	10.8	109	<1.00	1.91	44.0	15.9	988	230	10,500	341	< 0.0835	<1.00	86.8	<1.00	<1.00	<1.00	26.1	1,270
Tire-Fire-3-0.5'-0.6'	09-Apr-13	8,440	<2.00	2.20	29.1	<1.00	<1.00	51.1	22.0	70.3	14.0	24,100	391	<0.0835	<1.00	268	<1.00	<1.00	<1.00	33.1	84.9
Tire-Fire-3-(1.5')	24-Jul-13	11,800		<1.00	12.1		<1.00	12.2	14.4	204	<1.00	12,400	358	< 0.0835		28.3				41.0	55.1
Tire-Fire-4-0.0'-0.1'	09-Apr-13	39,700	<2.00	26.8	329	<1.00	2.58	52.6	13.2	2,430	74.4	7,590	447	< 0.0835	1.21	64.8	<1.00	<1.00	<1.00	28.6	2,830
Tire-Fire-4-0.5'-0.6'	09-Apr-13	9,830	<2.00	2.54	37.5	<1.00	<1.00	36.3	16.5	144	7.64	14,300	412	< 0.0835	<1.00	95.9	<1.00	<1.00	<1.00	40.8	185
Tire-Fire-4-(1.0')	24-Jul-13																				
Tire-Fire-5-0.0'-0.1' (Duplicate of Tire-Fire-1-0.0'-0.1')	09-Apr-13	6,470	<2.00	<1.00	28.2	<1.00	<1.00	24.6	23.7	97.3	23.3	6,620	311	<0.0835	<1.00	29.1	<1.00	<1.00	<1.00	20.4	1,950
Tire-Fire-6-(0.0'-0.1')	24-Jul-13	8,650		<1.00	15.5		<1.00	12.9	10.7	104	3.96	9,080	304	< 0.0835		20.4				28.1	90.2
Tire-Fire-7-(0.0'-0.1')	24-Jul-13	25,400		13.1	142		1.41	95.8	22.8	234	147	15,700	694	< 0.0835		85.5				50.9	1,130
Tire-Fire-8-(1.3') (Duplicate of Tire-Fire-3-(1.5'))	18-Jul-13	14,100		<1.00	14.5		<1.00	14.5	17.7	240	1.04	15,600	414	<0.0835		39.2				47.6	64.4
Tire-Fire-Background-Metals-0.0'-0.1	09-Apr-13	12,300	<2.00	4.33	122	<1.00	<1.00	43.5	12.9	30.5	11.0	7,290	538	< 0.0835	<1.00	52.8	<1.00	<1.00	<1.00	26.6	60.6

Notes:

7,920 Bold indicates a result that exceeds the detection limit.

1.01 Red bold indicates a result that exceeds a screening level.

mg/kg milligrams per kilogram or parts per million

-- Not analyzed.

^a USEPA - Online RSL Calculator - Resident Risk-Based Screening Levels (RSL) for Soil. http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

^b Table A Environmental Screening Levels (ESLs) Shallow Soils (<3m bgs) Groundwater is Current or Potential Source of Drinking Water. California Regional Water Quality Control Board San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, November 2007, revised May 2008.

^c Table C. Environmental Screening Levels (ESLs) Deep Soils (>3m bgs) Groundwater is Current or Potential Source of Drinking Water. California Regional Water Quality Control Board San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, November 2007, revised May 2008.

TABLE 3 TIRE FIRE PROPERTY GPS COORDINATES COLLECTED BY YTEP

Humboldt County, California

				Horizontal
Feature	Latitude	Longitude	Collection Method	Datum
Tire-Fire-1	41.1885928600	-123.6863982800	Collected by YTEP - (Trimble)	NAD 83
Tire-Fire-2	41.1885443800	-123.6865602900	Collected by YTEP - (Trimble)	NAD 83
Tire-Fire-3	41.1884045200	-123.6864808500	Collected by YTEP - (Trimble)	NAD 83
Tire-Fire-4	41.1883937800	-123.6865791300	Collected by YTEP - (Trimble)	NAD 83
Tire-Fire-Background- Metals	41.1887500000	-123.6864900000	Collected by YTEP - (Garmin)	NAD 83
Tire-Fire-6	41.1883257240	-123.6864727204	Collected by YTEP - (Trimble)	NAD 83
Tire-Fire-7	41.1883452273	-123.6866204041	Collected by YTEP - (Trimble)	NAD 83
Tire-Fire Access	41.1889575100	-123.6866250300	Collected by YTEP - (Trimble)	NAD 83

Notes: Locations were plotted based on the GPS locations collected by YTEP on April 9, 2013.

FIGURES

APPENDIX A Boring Logs

		Log of Boring	Tir	e-Fire-1				
Da Da	ate S ate C	tarted: April 9, 2013 ompleted: July 24, 2013	Driller: Freshwater Environmental Services Drilling Method: Shovel, Rock Bar, Jackham					
Recovery	Depth (ft)	Description	nscs	R	emarks			
Ľ.	0—			Ground Surface				
		Approximately 1" of melted metal and burned rubbe was scraped off prior to collecting the sample.	er GP	Soil Sai	mple: Tire-Fire-1-(0.0'-0.1') ed 4-9-13)			
	0.2—	~90% gravel consisting of angular schist fragments ~5% silt, ~5% clay, moist, 10YR 5/1 (gray).	, ,					
	0.3—							
	0.4—	-						
	— 0.5—							
%0(— 0.6—	Boring stopped at 0.6' on April 9, 2013.		(Collect	mple: Tire-Fire-1-(0.5'-0.6') ed 4-9-13)			
10		Boring continued on July 18, 2013.						
	0.7—	~80% gravel consisting of angular schist fragment ~15% silt, ~5% clay, dry, 10YR 5/1 (gray).	S,					
	0.8—							
	0.9—			Soil Sam	ple: Tire-Fire-1-(1.0')			
	1 0—	Boring stopped at 1.0' on July 18, 2013.		(Collected	d 7-18-13 – Not Analyzed)			
	1.0	Boring continued on July 24, 2013.						
	 1.1	~80% gravel consisting of angular schist fragments ~15% silt, ~5% clay, dry, 10YR 5/1 (gray).	, ,	Soil Sam	ple: Tire-Fire-1-(1.2')			
	1.2—			(Collected	7-24-13)			
	— 1.3—		E	3OH ~ 1.2'				
	— 1.4—							
	— 1.5—							
	Tot	tal Depth: ~ 1.2 feet		Tire	-Fire-1			
		•		1110				
				Yurok Tribe Er	nvironmental Program			
	K			Tire I	Fire Property			
	E	Freshwater Environmental Servio	ces	Date: 8-14-13	By: SJT			

		Log of Boring	Tir	e-Fire-2				
Da Da	ate St ate Co	tarted: April 9, 2013 ompleted: July 24, 2013	Driller: Freshwater Environmental Services Drilling Method: Shovel, Rock Bar, Jackhamme					
ecovery	epth (ft)	Description	nscs	R	emarks			
R	0			Ground Surface				
	0.1	~90% sand, medium to coarse, angular, ~10% silt, moist, 10YR 4/1 (dark gray).	SP	Soil Sa	m ple: Tire-Fire-2-(0.0'-0.1') ed 4-9-13)			
	0.1	~90% gravel consisting of angular schist fragments ~5% silt, ~5% clay, moist, 10YR 5/1 (gray).	^{3,} GP					
	0.3—							
	0.4— — 0.5—							
100%	 0.6	Boring stopped at 0.6' on April 9, 2013.		Soil Sa	mple: Tire-Fire-2-(0.5'-0.6') ed 4-9-13)			
		Boring continued on July 18, 2013.						
	0.7—	~80% gravel consisting of angular schist fragment ~15% silt, ~5% clay, dry, 10YR 5/1 (gray).	S,					
	0.8—							
	0.9—	Paring standed at 1.0' on July 19, 2012		Soil Sam	ple: Tire-Fire-2-(1.0')			
	1.0—	boing stopped at 1.0 off July 18, 2013.		(Collected	I 7-18-13 – Not Analyzed)			
	 1.1 1.2	Boring continued on July 24, 2013. ~80% gravel consisting of angular schist fragments ~15% silt, ~5% clay, dry, 10YR 5/1 (gray).	3,	Soil Sam	ple: Tire-Fire-2-(1.3')			
	1.3—			(Collected	17-24-13)			
			E	3OH ~ 1.3'				
	Tot	al Depth: ~ 1.3 feet		Tire	e-Fire-2			
				Yurok Tribe E	nvironmental Program			
	$\langle \Sigma \rangle$	Freshwater Environmental Service	ces	I Ire I Date: 8-14-13	By: SJT			

		Log of Boring	Ti	re-F	Fire-3	
Da Da	ite St ite Co	tarted: April 9, 2013 ompleted: July 24, 2013	Driller: F Drilling	reshw Metho	ater Environm d: Shovel, Ro	ental Services ck Bar, Jackhammer
ecovery)epth (ft)	Description	uscs		Rer	narks
8				Grou	Ind Surface	
		Approximately ½" of melted metal was scraped of prior to collecting the sample.	f SF		Soil Sampl	e: Tire-Fire-3-(0.0'-0.1') I-9-13)
	0.1—	~90% sand, medium to coarse, angular to subangular, ~10% silt, moist, 10YR 4/1 (dark gray). GF			,
	0.2—	~90% gravel consisting of schist fragments, angular ~5% silt, ~5% clay, moist, 10YR 5/1 (gray).	r,		8	
	0.3—					
	0.5—					
		Boring stopped at 0.6' on April 9, 2013.			✓ Soil Sampl	e: Tire-Fire-3-(0.5'-0.6') ! -9-13)
	0.0	Boring continued on July 18, 2013			8	
%(0.7	~80% gravel consisting of angular schist fragments ~15% silt, ~5% clay, dry, 10YR 5/1 (gray).	5,			
100	 0.8				8	
	 0.9					
	 1.0—					
	1 1					
	1.1-				Soil Sample	: Tire-Fire-3-(1.2')
	_	Boring stopped at 1.2' on July 18, 2013.			(Collected 7-	18-13 – Not Analyzed)
	1.2—	Boring continued on July 24, 2013			8	
	 1.3	~80% gravel consisting of angular schist fragments ~15% silt, ~5% clay, dry, 10YR 5/1 (gray).	,			
	— 1.4—				Soil Sample:	Tire-Fire-3-(1.5')
	_				(Collected 7-2	24-13)
	1.5—			BOH ~	1.5'	
	Tot	al Depth: ~ 1.5 feet			Tire-	Fire-3
				Yu	ok Tribe Envi	ronmental Program
	(A.				Tire Fire	e Property
	E	Freshwater Environmental Servic	es	Date	e: 8-14-13	By: SJT

		Log of Boring	Ti	re	e-Fire-4			
Da Da	ate St ate C	tarted: April 9, 2013 ompleted: July 24, 2013	Driller: Drilling	Freshwater Environmental Services Method: Shovel, Rock Bar, Jackhammer				
ecovery	epth (ft)	Description	SUSI I		R	emarks		
Ř					Ground Surface			
		Approximately 1" of melted metal and charcoal was scraped off prior to collecting the sample.	as SF	C	Soil Sar	nple: Tire-Fire-4-(0.0'-0.1') ed 4-9-13)		
	0.1—	~90% sand, medium to coarse, angular, ~10% silt moist, 10YR 4/1 (dark gray).	t, GI	D				
	 0.2— ~90% gravel consisting of angular schist fragments, ~5% silt, ~5% clay, moist, 10YR 5/1 (gray). 							
	0.3—							
	0.4—							
100%	0.5—				Soil Sar	nple: Tire-Fire-4-(0.5'-0.6')		
	0.6—	Boring stopped at 0.6' on April 9, 2013.			Collecte	ed 4-9-13)		
	0.0	Boring continued on July 18, 2013. ~80% gravel consisting of angular schist fragments	s,					
	 0.8	~15% silt, ~5% clay, dry, 10YR 5/1 (gray).						
	— 0.9—				Soil Samı	ple: Tire-Fire-4-(1.0')		
	— 1.0—	Boring continued on July 24, 2013.			(Collected) Tire-Fire-4	I 7-18-13 – Not Analyzed) 4-(1.0') (Collected on 7-24-13)		
	— 1.1—			B	OH ~ 1.0'			
	— 1.2—	-						
	— 1.3—							
	 1.4							
	1.5—							
	Tot	tal Depth: ~ 1.0 feet			Tire	e-Fire-4		
┣—	_			Yurok Tribe Environmental Program				
	(\mathcal{E})	Freshwater Environmental Service	ces	╞	Tire F	By: SIT		

	Log of Boring	Tire-Fire-6
Date St Date C	arted: July 18, 2013 cmpleted: July 18, 2013	Driller: Freshwater Environmental Services Drilling Method: Shovel and Rock Bar
Recovery Depth (ft)	Description	S S S Remarks
0 01 	~50% silt, ~40% gravel consisting of angular schi fragments up to approximately 1", ~10% very fine sand, dry, 10YR 4/1 (dark gray).	hist BOH ~ 0.1'
0.2— — 0.3—		
0.4—		
0.6		
0.7—		
0.9—		
1.1— 1.2—		
 1.3		
1.4— — 1.5—		
Tot	al Depth: ~ 0.1 feet	Tire-Fire-6
	Freshwater Environmental Servi	vices Tire Fire Property Date: 8-7-13 By: SJT

		Log of Boring	Tir	e-Fire-7				
Da Da	ate St ate Co	arted: July 24, 2013 Sompleted: July 24, 2013	Driller: Fr Drilling M	Freshwater Environmental Services Method: Shovel and Rock Bar				
Recovery	Depth (ft)	Description	nscs	Rem	narks			
100%	0	~80% silt, ~20% charcoal fragments, dry, 10YR 4 (dark gray).	4/1 ML	Ground Surface Soil Samp (Collected	l e: Tire-Fire-7-(0.0'-0.1') 7-24-13)			
			I	3OH ~ 0.1'				
	 0.3							
	0.4— —							
	0.5—							
	0.0—							
	 0.8—							
	 0.9							
	1.0— —							
	1.1— — 1 2—							
	1.2							
	 1.4—							
	 1.5—							
	Tota	al Depth: ~ 0.1 feet		Tire-	Fire-7			
		Freshwater Environmental Serv	ices	Yurok Tribe Envir Tire Fire Date: 8-7-13	onmental Program Property By: SJT			

		Log of Boring Tire-Fi	ire-	Bac	kground-Metals
Da Da	ate State Co	arted: April 9, 2013 Sompleted: April 9, 2013	Drill Drill	er: Frei ing M	eshwater Environmental Services ethod: Shovel and Rock Bar
ecovery	epth (ft)	Description		NSCS	Remarks
8					Ground Surface
100%	0.1	~70% silt, ~20% gravel up to $\frac{3}{4}$ ", subangular to subrounded, ~5% roots and organics, ~5% fine sand moist 10YR $\frac{4}{1}$ (dark grav)		ML	Soil Sample: Tire-Fire-Background- Metals-(0.0'-0.1') (Collected 4-9-13)
	 0.2		_/	B	3OH ~ 0.1'
	 0.3				
	 0.5				
	 0.6—				
	 0.7				
	— 0.8—				
	0.9				
	1.0—				
	1.1—				
	1.2— —				
	1.3— —				
	1.4— —				
	1.5—				
	Tota	al Depth: ~ 0.1 feet			Tire-Fire-Background-Metals
╞		Erochwater Environmental Serv	icoc		Yurok Tribe Environmental Program Tire Fire Property
	K		1662	Ī	Date: 4-18-13 By: SJT

APPENDIX B Sample Location Photographs

Photo 1. Tire Fire Site. Image date: December 11, 2012.

Photo 2. Sample location for Tire-Fire-1. Image date: December 11, 2012.

Photo 3. Sample location for Tire-Fire-1. Image date: April 9, 2013.

Photo 4. Sample location for Tire-Fire-1. Image date: April 9, 2013.

Photo 5. Sample location for Tire-Fire-2. Image date: April 9, 2013.

Photo 6. Sample location for Tire-Fire-2. Image date: April 9, 2013.

Photo 7. Sample location for Tire-Fire-3. Image date: April 9, 2013.

Photo 8. Sample location for Tire-Fire-3. Image date: April 9, 2013.

Photo 9. Sample location for Tire-Fire-4. Image date: April 9, 2013.

Photo 10. Sample location for Tire-Fire-4. Image date: April 9, 2013.

Photo 11. Sample location for Tire-Fire-Background-Metals. Image date: April 9, 2013.

Photo 12. Sample location for Tire-Fire-Background-Metals. Image date: April 9, 2013.

Photo 13. Sample location for Tire-Fire-6. Image date: July 24, 2013.

Photo 14. Sample location for Tire-Fire-7. Image date: July 24, 2013.

APPENDIX C Laboratory Report and Chain-of-Custody Record - 1

WORK ORDER NUMBER: 13-04-0823

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For Client: Freshwater Environmental Services Client Project Name: Tire Fire Property Attention: Stan Thiesen 78 Sunny Brae Center Arcata, CA 95521-6742

Approved for release on 04/19/2013 by: Don Burley Project Manager

ResultLink)

Email your PM)

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

10 Lincoln Way, Garden Grove, CA 92841-1432 🔹 TEL: (714) 895-5494 🔹 FAX: (714) 894-7501 🔹 www.calscience.com

Contents

Client Project Name: Tire Fire Property Work Order Number: 13-04-0823

1	Work Order Narrative	3
2	Client Sample Data	4
	2.1 EPA 8015B DRO (Solid)	4
	2.2 EPA 8015B (M) TPH Motor Oil (Solid)	7
	2.3 EPA 8015B GRO (Solid)	10
	2.4 EPA 8270C Semi-Volatile Organics (Solid)	13
	2.5 EPA 8260B Volatile Organics + Oxygenates Prep 5035 (Solid)	23
	2.6 EPA 6020 ICP/MS Metals / EPA 7471A Mercury (Solid)	33
3	Quality Control Sample Data	37
	3.1 MS/MSD and/or Duplicate	37
	3.2 LCS/LCSD	45
4	Glossary of Terms and Qualifiers	52
5	Chain of Custody/Sample Receipt Form	53

Work Order Narrative

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 04/11/2013. They were assigned to Work Order 13-04-0823.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontract Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

 NELAP ID: 03220CA · DoD-ELAP ID: L10-41 · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

 ▲

 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 4 of 56

Freshwater Environmental Se	ervices		Date Rec	eived:				04/11/13
78 Sunny Brae Center			Work Ord	der No:			13	3-04-0823
Arcata, CA 95521-6742			Preparati	on:			EF	PA 3550B
			Method:				EF	PA 8015B
Project: Tire Fire Property							Pa	age 1 of 3
		Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	OC Batch ID
		Number	Collected	Callel			04/18/13	4204420224
1 Ire-Fire-1-0.0°-0.1°		13-04-0823-1-D	04/09/13 11:00	Solia	GC 45	04/12/13	17:22	130412B03A
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Diesel Range Organics	25	5.0	1	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
n-Octacosane	108	61-145						
Tire-Fire-1-0.5'-0.6'		13-04-0823-2-B	04/09/13 11:20	Solid	GC 45	04/12/13	04/18/13 17:38	130412B03A
Darometer	Decult		DE	Qual	Linita			
	ND	<u>KL</u>		<u>Quai</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	I	36	тід/кд			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	104	61-145						
Tire-Fire-2-0.0'-0.1'		13-04-0823-3-B	04/09/13 12:10	Solid	GC 45	04/12/13	04/18/13 17:57	130412B03A
Parameter	Result	RI	DE	Qual	Unite			
Diesel Range Organics	64	5.0	1	<u>sg</u> .HD	ma/ka			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	97	61-145						
Tire-Fire-2-0.5'-0.6'		13-04-0823-4-B	04/09/13 12:20	Solid	GC 45	04/12/13	04/18/13 18:14	130412B03A
Parameter	Result	RI	DE	Qual	Inite			
Diesel Range Organics	36	5.0	1	SG.HD	ma/ka			
Dissor range organios			-	,2				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	99	61-145						

RL - Reporting Limit , DF - Dilution Factor ,

hM

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 5 of 56

Freshwater Environmental S	Date Received: 04/11/13							
78 Sunny Brae Center	Work Order No:					13-04-0823		
Arcata, CA 95521-6742		EPA 3550B						
			Method:				EF	PA 8015B
Project: Tire Fire Property							Pa	ige 2 of 3
		l ah Sample	Date/Time			Date	Date/Time	<u> </u>
Client Sample Number		Number	Collected	Matrix	Instrument	Prepared	Analyzed	QC Batch ID
Tire-Fire-3-0.0'-0.1'		13-04-0823-5-B	04/09/13 11:35	Solid	GC 45	04/12/13	04/18/13 18:31	130412B03A
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Diesel Range Organics	6300	120	25	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	125	61-145						
Tire-Fire-3-0.5'-0.6'		13-04-0823-6-B	04/09/13 11:45	Solid	GC 45	04/12/13	04/18/13 18:49	130412B03A
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	1000	100	20	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	111	61-145						
Tire-Fire-4-0.0'-0.1'		13-04-0823-7-B	04/09/13 12:00	Solid	GC 45	04/12/13	04/18/13 19:06	130412B03A
Deremeter	Decult	Ы		Qual	Linita			
	<u>Result</u>		2 2		<u>oniis</u> ma/ka			
Diesei Range Organics	51	10	2	3 G ,HD	iiig/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	105	61-145						
Tire-Fire-4-0.5'-0.6'		13-04-0823-8-B	04/09/13 12:05	Solid	GC 45	04/12/13	04/18/13 19:25	130412B03A
Darameter	Boowlt	DI	DE	Que	L Inita			
	<u>rtesuit</u> 220	<u>KL</u>	<u>UF</u> 10		<u>Units</u>			
Diesel Range Organics	220	50	10	3 9 , ND	тту/кд			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	96	61-145						

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

Mulhan

Page 6 of 56

04/11/13 13-04-0823 EPA 3550B EPA 8015B

Page 3 of 3

Freshwater Environmental Services	Date Received:	
78 Sunny Brae Center	Work Order No:	
Arcata, CA 95521-6742	Preparation:	
	Method:	
Project: Tire Fire Property		

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-5-0.0'-0.1'		13-04-0823-9-B	04/09/13 11:30	Solid	GC 45	04/12/13	04/18/13 19:42	130412B03A
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	23	5.0	1	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	100	61-145						
Method Blank		099-15-414-214	N/A	Solid	GC 45	04/12/13	04/18/13 14:41	130412B03A
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	100	61-145						

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

Mulhan

Freshwater Environmental Services

Date Received:

Sonelac H

Page 7 of 56

04/11/13

78 Sunny Brae Center Arcata, CA 95521-6742		13-04-0823 EPA 3550B EPA 8015B (M)						
Project: Tire Fire Property							Pa	age 1 of 3
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-1-0.0'-0.1'		13-04-0823-1-D	04/09/13 11:00	Solid	GC 45	04/12/13	04/18/13 17:22	130412B04A
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	86	25	1	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
n-Octacosane	108	61-145						
Tire-Fire-1-0.5'-0.6'		13-04-0823-2-B	04/09/13 11:20	Solid	GC 45	04/12/13	04/18/13 17:38	130412B04A
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1	SG	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	104	61-145						
Tire-Fire-2-0.0'-0.1'		13-04-0823-3-В	04/09/13 12:10	Solid	GC 45	04/12/13	04/18/13 17:57	130412B04A
Parameter	Result	RL	DF	Qual	Units			
TPH as Motor Oil	99	25	1	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	97	61-145						
Tire-Fire-2-0.5'-0.6'		13-04-0823-4-B	04/09/13 12:20	Solid	GC 45	04/12/13	04/18/13 18:14	130412B04A
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	170	25	1	SG,HD	mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

99

61-145

n-Octacosane

IN ACCORDA ACCRED,

Page 8 of 56

Freshwater Environmental Ser 78 Sunny Brae Center Arcata, CA 95521-6742		Date Received: Work Order No: Preparation: Method:					04/11/13 3-04-0823 PA 3550B 3015B (M)	
Project: Tire Fire Property							Pa	ige 2 of 3
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-3-0.0'-0.1'		13-04-0823-5-B	04/09/13 11:35	Solid	GC 45	04/12/13	04/18/13 18:31	130412B04A
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	12000	620	25	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	125	61-145						
Tire-Fire-3-0.5'-0.6'		13-04-0823-6-B	04/09/13 11:45	Solid	GC 45	04/12/13	04/18/13 18:49	130412B04A
Parameter	Result	RL	DF	Qual	Units			
TPH as Motor Oil	4400	500	20	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	111	61-145						
Tire-Fire-4-0.0'-0.1'		13-04-0823-7-B	04/09/13 12:00	Solid	GC 45	04/12/13	04/18/13 19:06	130412B04A
Parameter	Result	RI	DE	Qual	Linits			
TPH as Motor Oil	180	50	2	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	105	61-145						

Tire-Fire-4-0.5'-0.6'		13-04-0823-8-B	04/09/13 12:05	Solid	GC 45	04/12/13	04/18/13 19:25	130412B04A
<u>Parameter</u> TPH as Motor Oil	<u>Result</u> 930	<u>RL</u> 250	<u>DF</u> 10	<u>Qual</u> SG,HD	<u>Units</u> mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	96	61-145						

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

. M

Sonelac *

Page 9 of 56

Freshwater Environmental Services					
78 Sunny Brae Center					
Arcata, CA 95521-6742					

Date Received:
Work Order No:
Preparation:
Method:

04/11/13 13-04-0823 EPA 3550B EPA 8015B (M)

Page 3 of 3

Project: Tire Fire Property

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-5-0.0'-0.1'		13-04-0823-9-B	04/09/13 11:30	Solid	GC 45	04/12/13	04/18/13 19:42	130412B04A
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Motor Oil	84	25	1	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	100	61-145						
Method Blank		099-15-420-402	N/A	Solid	GC 45	04/12/13	04/18/13 14:41	130412B04A
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	100	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 10 of 56

Freshwater Environmental Se		Date Received: 04/11/13								
78 Sunny Brae Center		Work Order No: 13-04-0823								
Arcata, CA 95521-6742		Preparation: EPA 5030C								
		Method: EPA 8015B								
Project: Tire Fire Property							Pa	age 1 of 3		
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Tire-Fire-1-0.0'-0.1'		13-04-0823-1-D	04/09/13 11:00	Solid	GC 22	04/12/13	04/12/13 17:20	130412B01		
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	70	42-126								
Tire-Fire-1-0.5'-0.6'		13-04-0823-2-B	04/09/13 11:20	Solid	GC 22	04/12/13	04/12/13 18:59	130412B01		
Parameter	Result	RL	DF	Qual	Units					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	78	42-126								
Tire-Fire-2-0.0'-0.1'		13-04-0823-3-B	04/09/13 12:10	Solid	GC 22	04/12/13	04/12/13 19:32	130412B01		
Parameter	Result	RL	DF	Qual	Units					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	76	42-126								
Tire-Fire-2-0.5'-0.6'		13-04-0823-4-B	04/09/13 12:20	Solid	GC 22	04/12/13	04/12/13 20:05	130412B01		
Parameter	Result	RL	DF	Qual	Units					
Gasoline Range Organics	ND	0.50	1	<u></u>	mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1.4-Bromofluorobenzene	76	42-126								

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

hM

Page 11 of 56

Freshwater Environmental S	ervices		Date Received: 04/11/1								
78 Sunny Brae Center			Work Order No: 13-04-0823								
Arcala, CA 95521-6742	Mothod: EPA 5030C										
			Methou.				⊑r	-A 0013D			
Project: Tire Fire Property							Pa	age 2 of 3			
Client Sample Number		Lab Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/Time Analvzed	QC Batch ID			
Tire-Fire-3-0.0'-0.1'		13-04-0823-5-B	04/09/13 11:35	Solid	GC 22	04/12/13	04/12/13 20:37	130412B01			
Parameter	Result	RL	DF	Qual	<u>Units</u>						
Gasoline Range Organics	ND	0.50	1		mg/kg						
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
1,4-Bromofluorobenzene	71	42-126									
Tire-Fire-3-0.5'-0.6'		13-04-0823-6-B	04/09/13 11:45	Solid	GC 22	04/12/13	04/12/13 21:10	130412B01			
Parameter	Result	RL	DF	Qual	Units						
Gasoline Range Organics	ND	0.50	1		mg/kg						
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
1,4-Bromofluorobenzene	76	42-126									
Tire-Fire-4-0.0'-0.1'		13-04-0823-7-B	04/09/13 12:00	Solid	GC 22	04/12/13	04/12/13 21:43	130412B01			
Parameter	Result	RL	DF	Qual	Units						
Gasoline Range Organics	ND	0.50	1		mg/kg						
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
1,4-Bromofluorobenzene	72	42-126									
Tire-Fire-4-0.5'-0.6'		13-04-0823-8-B	04/09/13 12:05	Solid	GC 22	04/12/13	04/12/13 22:16	130412B01			
Parameter	Result	RI	DF	Qual	Inits						
Gasoline Range Organics	ND	0.50	1		mg/kg						
Surrogates:	<u>REC (%)</u>	Control Limits		Qual							
1.4-Bromofluorobenzene	77	42-126									

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

Page 12 of 56

Freshwater Environmental Sei	vices		Date Rec	eived:	04/11/13			
78 Sunny Brae Center			Work Ord	ler No:			13	-04-0823
Arcata, CA 95521-6742			Preparation	on:			EF	PA 5030C
			Method:				EF	PA 8015B
Project: Tire Fire Property							Do	and 2 of 2
Flojeci. The Flie Flopenty							Гd	ige 3 01 3
Client Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Tire-Fire-5-0.0'-0.1'		13-04-0823-9-B	04/09/13 11:30	Solid	GC 22	04/12/13	04/12/13 22:49	130412B01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	73	42-126						

.,		12 120						
Method Blank		099-12-024-704	N/A	Solid	GC 22	04/12/13	04/12/13 14:08	130412B01
Parameter Gasoline Range Organics	<u>Result</u> ND	<u>RL</u> 0.50	<u>DF</u> 1	Qual	<u>Units</u> mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	71	42-126						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulhan

Page 1 of 10

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

04/11/13
13-04-0823
EPA 3545
EPA 8270C
mg/kg

Project: Tire Fire Property

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	Time /zed	QC Batch ID
Tire-Fire-1-0.0'-0.1'			13-	04-0823-1-D	04/09/13 11:00	Solid	GC/MS CCC	04/12/13	04/15 14:	5/13 13	130412L07
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acenaphthene	ND	0.50	1		2,4-Dimethylpl	henol		ND	0.50	1	
Acenaphthylene	ND	0.50	1		4,6-Dinitro-2-N	/lethylphen	ol	ND	2.5	1	
Aniline	ND	0.50	1		2,4-Dinitrophe	nol		ND	2.5	1	
Anthracene	ND	0.50	1		2,4-Dinitrotolu	ene		ND	0.50	1	
Azobenzene	ND	0.50	1		2,6-Dinitrotolu	ene		ND	0.50	1	
Benzidine	ND	10	1		Fluoranthene			ND	0.50	1	
Benzo (a) Anthracene	ND	0.50	1		Fluorene			ND	0.50	1	
Benzo (a) Pyrene	ND	0.50	1		Hexachloro-1,3	3-Butadien	е	ND	0.50	1	
Benzo (b) Fluoranthene	ND	0.50	1		Hexachlorober	nzene		ND	0.50	1	
Benzo (g,h,i) Perylene	ND	0.50	1		Hexachlorocyc	lopentadie	ne	ND	2.5	1	
Benzo (k) Fluoranthene	ND	0.50	1		Hexachloroeth	ane		ND	0.50	1	
Benzoic Acid	ND	2.5	1		Indeno (1,2,3-	c,d) Pyrene	e	ND	0.50	1	
Benzyl Alcohol	ND	0.50	1		Isophorone			ND	0.50	1	
Bis(2-Chloroethoxy) Methane	ND	0.50	1		2-Methylnapht	halene		ND	0.50	1	
Bis(2-Chloroethyl) Ether	ND	2.5	1		1-Methylnapht	halene		ND	0.50	1	
Bis(2-Chloroisopropyl) Ether	ND	0.50	1		2-Methylpheno	bl		ND	0.50	1	
Bis(2-Ethylhexyl) Phthalate	ND	0.50	1		3/4-Methylphe	nol		ND	0.50	1	
4-Bromophenyl-Phenyl Ether	ND	0.50	1		N-Nitroso-di-n	-propylami	ne	ND	0.50	1	
Butyl Benzyl Phthalate	ND	0.50	1		N-Nitrosodime	thylamine		ND	0.50	1	
4-Chloro-3-Methylphenol	ND	0.50	1		N-Nitrosodiphe	enylamine		ND	0.50	1	
4-Chloroaniline	ND	0.50	1		Naphthalene			ND	0.50	1	
2-Chloronaphthalene	ND	0.50	1		4-Nitroaniline			ND	0.50	1	
2-Chlorophenol	ND	0.50	1		3-Nitroaniline			ND	0.50	1	
4-Chlorophenyl-Phenyl Ether	ND	0.50	1		2-Nitroaniline			ND	0.50	1	
Chrysene	ND	0.50	1		Nitrobenzene			ND	2.5	1	
Di-n-Butyl Phthalate	ND	0.50	1		4-Nitrophenol			ND	0.50	1	
Di-n-Octyl Phthalate	ND	0.50	1		2-Nitrophenol			ND	0.50	1	
Dibenz (a,h) Anthracene	ND	0.50	1		Pentachloroph	ienol		ND	2.5	1	
Dibenzofuran	ND	0.50	1		Phenanthrene			ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Phenol			ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Pyrene			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Pyridine			ND	0.50	1	
3,3'-Dichlorobenzidine	ND	10	1		1,2,4-Trichlord	benzene		ND	0.50	1	
2,4-Dichlorophenol	ND	0.50	1		2,4,6-Trichlord	phenol		ND	0.50	1	
Diethyl Phthalate	ND	0.50	1		2,4,5-Trichlord	phenol		ND	0.50	1	
Dimethyl Phthalate	ND	0.50	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	Qual
2-Fluorobiphenvl	78	38-134			2-Fluoropheno	bl		96	42-120		
Nitrobenzene-d5	83	42-150			n-Ternhenyl d	14		90	35-167		
	101	16 110				i t		100	26 122		
rnenol-ab	101	40-110			∠,4,0-1 ribrom	phenol		100	30-132		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulma

Page 14 of 56

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C
Units:	mg/kg
	Page 2 of 10

Project: Tire Fire Property

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	Time /zed	QC Batch ID
Tire-Fire-1-0.5'-0.6'			13-	04-0823-2-B	04/09/13 11:20	Solid	GC/MS CCC	04/12/13	04/1 16:	5/13 24	130412L07
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acenaphthene	ND	0.50	1		2,4-Dimethylp	henol		ND	0.50	1	
Acenaphthylene	ND	0.50	1		4,6-Dinitro-2-N	Methylphen	ol	ND	2.5	1	
Aniline	ND	0.50	1		2,4-Dinitrophe	enol		ND	2.5	1	
Anthracene	ND	0.50	1		2,4-Dinitrotolu	ene		ND	0.50	1	
Azobenzene	ND	0.50	1		2,6-Dinitrotolu	ene		ND	0.50	1	
Benzidine	ND	10	1		Fluoranthene			ND	0.50	1	
Benzo (a) Anthracene	ND	0.50	1		Fluorene			ND	0.50	1	
Benzo (a) Pyrene	ND	0.50	1		Hexachloro-1,	3-Butadien	Э	ND	0.50	1	
Benzo (b) Fluoranthene	ND	0.50	1		Hexachlorober	nzene		ND	0.50	1	
Benzo (g,h,i) Perylene	ND	0.50	1		Hexachlorocyc	clopentadie	ne	ND	2.5	1	
Benzo (k) Fluoranthene	ND	0.50	1		Hexachloroeth	iane		ND	0.50	1	
Benzoic Ácid	ND	2.5	1		Indeno (1,2,3-	c,d) Pyrene)	ND	0.50	1	
Benzyl Alcohol	ND	0.50	1		Isophorone	.,,		ND	0.50	1	
Bis(2-Chloroethoxy) Methane	ND	0.50	1		2-Methylnapht	halene		ND	0.50	1	
Bis(2-Chloroethyl) Ether	ND	2.5	1		1-Methylnapht	thalene		ND	0.50	1	
Bis(2-Chloroisopropyl) Ether	ND	0.50	1		2-Methylpheno	ol		ND	0.50	1	
Bis(2-Ethylhexyl) Phthalate	ND	0.50	1		3/4-Methylphe	enol		ND	0.50	1	
4-Bromophenyl-Phenyl Ether	ND	0.50	1		N-Nitroso-di-n	-propylamir	ne	ND	0.50	1	
Butyl Benzyl Phthalate	ND	0.50	1		N-Nitrosodime	ethylamine		ND	0.50	1	
4-Chloro-3-Methylphenol	ND	0.50	1		N-Nitrosodiph	envlamine		ND	0.50	1	
4-Chloroaniline	ND	0.50	1		Naphthalene	,		ND	0.50	1	
2-Chloronaphthalene	ND	0.50	1		4-Nitroaniline			ND	0.50	1	
2-Chlorophenol	ND	0.50	1		3-Nitroaniline			ND	0.50	1	
4-Chlorophenyl-Phenyl Ether	ND	0.50	1		2-Nitroaniline			ND	0.50	1	
Chrysene	ND	0.50	1		Nitrobenzene			ND	2.5	1	
Di-n-Butyl Phthalate	ND	0.50	1		4-Nitrophenol			ND	0.50	1	
Di-n-Octyl Phthalate	ND	0.50	1		2-Nitrophenol			ND	0.50	1	
Dibenz (a.h) Anthracene	ND	0.50	1		Pentachloroph	nenol		ND	2.5	1	
Dibenzofuran	ND	0.50	1		Phenanthrene			ND	0.50	1	
1.2-Dichlorobenzene	ND	0.50	1		Phenol			ND	0.50	1	
1.3-Dichlorobenzene	ND	0.50	1		Pvrene			ND	0.50	1	
1.4-Dichlorobenzene	ND	0.50	1		Pvridine			ND	0.50	1	
3.3'-Dichlorobenzidine	ND	10	1		1.2.4-Trichlord	obenzene		ND	0.50	1	
2.4-Dichlorophenol	ND	0.50	1		2.4.6-Trichlord	ophenol		ND	0.50	1	
Diethyl Phthalate	ND	0.50	1		2.4.5-Trichlord	ophenol		ND	0.50	1	
Dimethyl Phthalate	ND	0.50	1		_, ., • • • • • • • • • • • • • • • • • •	-1			5.00	'	
Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u>	9	Qual
2-Fluorobiphenyl	80	<u></u>			2-Fluorophenc	bl		95	42-120		
Nitrobenzene-d5	83	42-150			n-Ternhenvl-d	14		95	35-167		
Phenol-d6	99	46-118			2,4,6-Tribrom	ophenol		78	36-132		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM

Page 15 of 56

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C
Units:	mg/kg
	Page 3 of 10

Project: Tire Fire Property

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal	Time /zed	QC Batch ID
Tire-Fire-2-0.0'-0.1'			13-	04-0823-3-B	04/09/13 12:10	Solid	GC/MS CCC	04/12/13	04/1 16:	5/13 50	130412L07
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acenaphthene	ND	0.50	1		2,4-Dimethylp	henol		ND	0.50	1	
Acenaphthylene	ND	0.50	1		4,6-Dinitro-2-N	Vethylphen	ol	ND	2.5	1	
Aniline	ND	0.50	1		2,4-Dinitrophe	enol		ND	2.5	1	
Anthracene	ND	0.50	1		2,4-Dinitrotolu	iene		ND	0.50	1	
Azobenzene	ND	0.50	1		2,6-Dinitrotolu	iene		ND	0.50	1	
Benzidine	ND	10	1		Fluoranthene			ND	0.50	1	
Benzo (a) Anthracene	ND	0.50	1		Fluorene			ND	0.50	1	
Benzo (a) Pyrene	ND	0.50	1		Hexachloro-1,	3-Butadien	е	ND	0.50	1	
Benzo (b) Fluoranthene	ND	0.50	1		Hexachlorobe	nzene		ND	0.50	1	
Benzo (g,h,i) Perylene	ND	0.50	1		Hexachlorocy	clopentadie	ne	ND	2.5	1	
Benzo (k) Fluoranthene	ND	0.50	1		Hexachloroeth	nane		ND	0.50	1	
Benzoic Acid	ND	2.5	1		Indeno (1,2,3-	c,d) Pyrene	e	ND	0.50	1	
Benzyl Alcohol	ND	0.50	1		Isophorone			ND	0.50	1	
Bis(2-Chloroethoxy) Methane	ND	0.50	1		2-Methylnapht	thalene		ND	0.50	1	
Bis(2-Chloroethyl) Ether	ND	2.5	1		1-Methylnapht	thalene		ND	0.50	1	
Bis(2-Chloroisopropyl) Ether	ND	0.50	1		2-Methylphene	ol		ND	0.50	1	
Bis(2-Ethylhexyl) Phthalate	ND	0.50	1		3/4-Methylphe	enol		ND	0.50	1	
4-Bromophenyl-Phenyl Ether	ND	0.50	1		N-Nitroso-di-n	n-propylami	ne	ND	0.50	1	
Butyl Benzyl Phthalate	ND	0.50	1		N-Nitrosodime	ethylamine		ND	0.50	1	
4-Chloro-3-Methylphenol	ND	0.50	1		N-Nitrosodiph	enylamine		ND	0.50	1	
4-Chloroaniline	ND	0.50	1		Naphthalene			ND	0.50	1	
2-Chloronaphthalene	ND	0.50	1		4-Nitroaniline			ND	0.50	1	
2-Chlorophenol	ND	0.50	1		3-Nitroaniline			ND	0.50	1	
4-Chlorophenyl-Phenyl Ether	ND	0.50	1		2-Nitroaniline			ND	0.50	1	
Chrysene	ND	0.50	1		Nitrobenzene			ND	2.5	1	
Di-n-Butyl Phthalate	ND	0.50	1		4-Nitrophenol			ND	0.50	1	
Di-n-Octyl Phthalate	ND	0.50	1		2-Nitrophenol			ND	0.50	1	
Dibenz (a,h) Anthracene	ND	0.50	1		Pentachloroph	nenol		ND	2.5	1	
Dibenzofuran	ND	0.50	1		Phenanthrene	;		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Phenol			ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Pyrene			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Pyridine			ND	0.50	1	
3,3'-Dichlorobenzidine	ND	10	1		1,2,4-Trichlor	obenzene		ND	0.50	1	
2,4-Dichlorophenol	ND	0.50	1		2,4,6-Trichlor	ophenol		ND	0.50	1	
Diethyl Phthalate	ND	0.50	1		2,4,5-Trichlor	ophenol		ND	0.50	1	
Dimethyl Phthalate	0.50	0.50	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>
2-Fluorobiphenyl	78	38-134			2-Fluorophene	ol		92	42-120		
Nitrobenzene-d5	83	42-150			p-Terphenvl-d	114		95	35-167		
Phenol-d6	101	46-118			246-Tribrom	onhenol		99	36-132		
	101	-110			2,4,0-1101011	oprienoi			00-102		

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

MM

Page 16 of 56

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C
Units:	mg/kg
	Page 4 of 10

Project: Tire Fire Property

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy	⁻ ime zed	QC Batch ID
Tire-Fire-2-0.5'-0.6'			13	-04-0823-4-B	04/09/13 12:20	Solid	GC/MS CCC	04/12/13	04/15 17:1	/13 7	130412L07
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acenaphthene	ND	0.50	1		2,4-Dimethylph	nenol		ND	0.50	1	
Acenaphthylene	ND	0.50	1		4,6-Dinitro-2-M	/lethylphen	ol	ND	2.5	1	
Aniline	ND	0.50	1		2,4-Dinitropher	nol		ND	2.5	1	
Anthracene	ND	0.50	1		2,4-Dinitrotolue	ene		ND	0.50	1	
Azobenzene	ND	0.50	1		2,6-Dinitrotolue	ene		ND	0.50	1	
Benzidine	ND	10	1		Fluoranthene			ND	0.50	1	
Benzo (a) Anthracene	ND	0.50	1		Fluorene			ND	0.50	1	
Benzo (a) Pyrene	ND	0.50	1		Hexachloro-1,3	3-Butadien	e	ND	0.50	1	
Benzo (b) Fluoranthene	ND	0.50	1		Hexachlorober	nzene		ND	0.50	1	
Benzo (g,h,i) Perylene	ND	0.50	1		Hexachlorocyc	lopentadie	ne	ND	2.5	1	
Benzo (k) Fluoranthene	ND	0.50	1		Hexachloroetha	ane		ND	0.50	1	
Benzoic Acid	ND	2.5	1		Indeno (1,2,3-0	c,d) Pyrene	e	ND	0.50	1	
Benzyl Alcohol	ND	0.50	1		Isophorone			ND	0.50	1	
Bis(2-Chloroethoxy) Methane	ND	0.50	1		2-Methylnapht	halene		ND	0.50	1	
Bis(2-Chloroethyl) Ether	ND	2.5	1		1-Methylnaphtl	halene		ND	0.50	1	
Bis(2-Chloroisopropyl) Ether	ND	0.50	1		2-Methylpheno	bl		ND	0.50	1	
Bis(2-Ethylhexyl) Phthalate	ND	0.50	1		3/4-Methylpher	nol		ND	0.50	1	
4-Bromophenyl-Phenyl Ether	ND	0.50	1		N-Nitroso-di-n-	-propylamii	ne	ND	0.50	1	
Butyl Benzyl Phthalate	ND	0.50	1		N-Nitrosodime	thylamine		ND	0.50	1	
4-Chloro-3-Methylphenol	ND	0.50	1		N-Nitrosodiphe	enylamine		ND	0.50	1	
4-Chloroaniline	ND	0.50	1		Naphthalene			ND	0.50	1	
2-Chloronaphthalene	ND	0.50	1		4-Nitroaniline			ND	0.50	1	
2-Chlorophenol	ND	0.50	1		3-Nitroaniline			ND	0.50	1	
4-Chlorophenyl-Phenyl Ether	ND	0.50	1		2-Nitroaniline			ND	0.50	1	
Chrysene	ND	0.50	1		Nitrobenzene			ND	2.5	1	
Di-n-Butyl Phthalate	ND	0.50	1		4-Nitrophenol			ND	0.50	1	
Di-n-Octyl Phthalate	ND	0.50	1		2-Nitrophenol			ND	0.50	1	
Dibenz (a,h) Anthracene	ND	0.50	1		Pentachloroph	enol		ND	2.5	1	
Dibenzofuran	ND	0.50	1		Phenanthrene			ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Phenol			ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Pyrene			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Pyridine			ND	0.50	1	
3,3'-Dichlorobenzidine	ND	10	1		1,2,4-Trichloro	benzene		ND	0.50	1	
2,4-Dichlorophenol	ND	0.50	1		2,4,6-Trichloro	phenol		ND	0.50	1	
Diethyl Phthalate	ND	0.50	1		2,4,5-Trichloro	phenol		ND	0.50	1	
Dimethyl Phthalate	0.53	0.50	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>(</u>	<u>Qual</u>
2-Fluorobiphenyl	76	38-134			2-Fluoropheno			88	42-120		
Nitrobenzene-d5	79	42-150			p-Terphenvl-d	14		92	35-167		
Phenol-d6	92	46-118			2.4.6-Tribromo	ophenol		82	36-132		
					_, .,						

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

04/11/13

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 9552

n M

78 Sunny Brae Center					Work Ord	ler No:				13	-04-0823
Arcata CA 95521-6742					Preparati	EPA 3545					
					Mothod:						
										EP	A 82700
					Units:						тід/кд
Project: Tire Fire Proper	ty									Pag	e 5 of 10
Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal	Time yzed	QC Batch II
Tire-Fire-3-0.0'-0.1'			13-04	-0823-5-B	04/09/13 11:35	Solid	GC/MS CCC	: 04/12/13	04/1 18:	5/13 09	130412L07
Comment(s): -The reporting limit is	s elevated resu	ltina from	matrix	interference).						
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Acenaphthene	ND	10	2		2.4-Dimethylph	nenol		ND	10	2	
Acenaphthylene	ND	1.0	2		4.6-Dinitro-2-N	1ethvlphend	bl	ND	5.0	2	
Aniline	ND	1.0	2		2.4-Dinitrophe	nol		ND	5.0	2	
Anthracene	ND	1.0	2		2.4-Dinitrotolue	ene		ND	1.0	2	
Azobenzene	ND	1.0	2		2.6-Dinitrotolue	ene		ND	1.0	2	
Benzidine	ND	20	2		Fluoranthene			ND	1.0	2	
Benzo (a) Anthracene	ND	1.0	2		Fluorene			ND	1.0	2	
Benzo (a) Pyrene	ND	1.0	2		Hexachloro-1.3	3-Butadiene	2	ND	1.0	2	
Benzo (b) Fluoranthene	ND	1.0	2		Hexachlorober	zene		ND	1.0	2	
Benzo (a.h.i) Pervlene	ND	1.0	2		Hexachlorocyc	lopentadier	he	ND	5.0	2	
Benzo (k) Fluoranthene	ND	1.0	2		Hexachloroeth	ane		ND	1.0	2	
Benzoic Acid	ND	5.0	2		Indeno (1.2.3-0	c.d) Pvrene		ND	1.0	2	
Benzyl Alcohol	ND	1.0	2		Isophorone	-,-, · , · -··-		ND	1.0	2	
Bis(2-Chloroethoxy) Methane	ND	1.0	2		2-Methylnapht	halene		ND	1.0	2	
Bis(2-Chloroethyl) Ether	ND	5.0	2		1-Methylnapht	halene		ND	1.0	2	
Bis(2-Chloroisopropyl) Ether	ND	1.0	2		2-Methylpheno	b		ND	1.0	2	
Bis(2-Ethylhexyl) Phthalate	ND	1.0	2		3/4-Methylphei	nol		ND	1.0	2	
4-Bromophenyl-Phenyl Ether	ND	1.0	2		N-Nitroso-di-n-	-propylamir	ne	ND	1.0	2	
Butyl Benzyl Phthalate	ND	1.0	2		N-Nitrosodime	thylamine		ND	1.0	2	
4-Chloro-3-Methylphenol	ND	1.0	2		N-Nitrosodiphe	enylamine		ND	1.0	2	
4-Chloroaniline	ND	1.0	2		Naphthalene			ND	1.0	2	
2-Chloronaphthalene	ND	1.0	2		4-Nitroaniline			ND	1.0	2	
2-Chlorophenol	ND	1.0	2		3-Nitroaniline			ND	1.0	2	
4-Chlorophenyl-Phenyl Ether	ND	1.0	2		2-Nitroaniline			ND	1.0	2	
Chrysene	ND	1.0	2		Nitrobenzene			ND	5.0	2	
Di-n-Butyl Phthalate	ND	1.0	2		4-Nitrophenol			ND	1.0	2	
Di-n-Octyl Phthalate	ND	1.0	2		2-Nitrophenol			ND	1.0	2	
Dibenz (a,h) Anthracene	ND	1.0	2		Pentachloroph	enol		ND	5.0	2	
Dibenzofuran	ND	1.0	2		Phenanthrene			ND	1.0	2	
1,2-Dichlorobenzene	ND	1.0	2		Phenol			ND	1.0	2	
1,3-Dichlorobenzene	ND	1.0	2		Pyrene			ND	1.0	2	
1,4-Dichlorobenzene	ND	1.0	2		Pyridine			ND	1.0	2	
3,3'-Dichlorobenzidine	ND	20	2		1,2,4-Trichloro	benzene		ND	1.0	2	
2,4-Dichlorophenol	ND	1.0	2		2,4,6-Trichloro	phenol		ND	1.0	2	
Diethyl Phthalate	ND	1.0	2		2,4,5-Trichloro	phenol		ND	1.0	2	
Dimethyl Phthalate	ND	1.0	2			-					
Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qı</u>	ıal	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u> </u>	Qual
2-Fluorobiphenyl	69	38-134			2-Fluoropheno	l		73	42-120		
Nitrobenzene-d5	66	42-150			p-Terphenvl-d	14		124	35-167		
Phenol-d6	79	46-118			2 4 6-Tribromo	nhenol		92	36-132		
	· -								50 IOZ		

RL - Reporting Limit , DF - Dilution Factor

Qual - Qualifiers

Return to Contents

04/11/13

Freshwater Environmental Services 78 Sunny Brae Arcata, CA 955

78 Sunny Brae Center					Work Orc	der No:				13-	04-0823
Arcata, CA 95521-6742		Preparation: EPA 354									
,					Method [.]					FP	A 8270C
					Units:					L, ,	ma/ka
Project: Tire Fire Prope	rtv				erinte.					Pag	≏ 6 of 10
	ity							5.4		- 49	
Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	i ime /zed	QC Batch ID
Tire-Fire-3-0.5'-0.6'	re-3-0.5'-0.6'		13-04-	0823-6-B	04/09/13 11:45	Solid	GC/MS CCC	: 04/12/13	04/15/13 19:29		130412L07
Comment(s): -The reporting limit	is elevated resu	Ilting from	matrix i	nterference	9.						
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acenaphthene	ND	5.0	10		2,4-Dimethylpl	henol		ND	5.0	10	
Acenaphthylene	ND	5.0	10		4,6-Dinitro-2-M	/lethylphend	bl	ND	25	10	
Aniline	ND	5.0	10		2,4-Dinitrophe	nol		ND	25	10	
Anthracene	ND	5.0	10		2,4-Dinitrotolue	ene		ND	5.0	10	
Azobenzene	ND	5.0	10		2,6-Dinitrotolue	ene		ND	5.0	10	
Benzidine	ND	100	10		Fluoranthene			ND	5.0	10	
Benzo (a) Anthracene	ND	5.0	10		Fluorene			ND	5.0	10	
Benzo (a) Pyrene	ND	5.0	10		Hexachloro-1,3	3-Butadiene	e	ND	5.0	10	
Benzo (b) Fluoranthene	ND	5.0	10		Hexachlorober	nzene		ND	5.0	10	
Benzo (g,h,i) Perylene	ND	5.0	10		Hexachlorocyc	clopentadier	ne	ND	25	10	
Benzo (k) Fluoranthene	ND	5.0	10		Hexachloroeth	ane		ND	5.0	10	
Benzoic Acid	ND	25	10		Indeno (1,2,3-0	c,d) Pyrene		ND	5.0	10	
Benzyl Alcohol	ND	5.0	10		Isophorone			ND	5.0	10	
Bis(2-Chloroethoxy) Methane	ND	5.0	10		2-Methylnapht	halene		ND	5.0	10	
Bis(2-Chloroethyl) Ether	ND	25	10		1-Methylnapht	halene		ND	5.0	10	
Bis(2-Chloroisopropyl) Ether	ND	5.0	10		2-Methylphenc	bl		ND	5.0	10	
Bis(2-Ethylhexyl) Phthalate	ND	5.0	10		3/4-Methylphe	nol		ND	5.0	10	
4-Bromophenyl-Phenyl Ether	ND	5.0	10		N-Nitroso-di-n-	-propylamir	ie	ND	5.0	10	
Butyl Benzyl Phthalate	ND	5.0	10		N-Nitrosodime	ethylamine		ND	5.0	10	
4-Chloro-3-Methylphenol	ND	5.0	10		N-Nitrosodiphe	enylamine		ND	5.0	10	
4-Chloroaniline	ND	5.0	10		Naphthalene			ND	5.0	10	
2-Chloronaphthalene	ND	5.0	10		4-Nitroaniline			ND	5.0	10	
2-Chlorophenol	ND	5.0	10		3-Nitroaniline			ND	5.0	10	
4-Chlorophenyl-Phenyl Ether	ND	5.0	10		2-Nitroaniline			ND	5.0	10	
Chrysene	ND	5.0	10		Nitrobenzene			ND	25	10	
Di-n-Butyl Phthalate	ND	5.0	10		4-Nitrophenol			ND	5.0	10	
Di-n-Octyl Phthalate	ND	5.0	10		2-Nitrophenol			ND	5.0	10	
Dibenz (a,n) Anthracene	ND	5.0	10		Pentachioroph	ienol		ND	25	10	
Dibenzoruran	ND	5.0	10		Phenanthrene			ND	5.0	10	
1,2-Dichlorobenzene	ND	5.0	10		Phenol			ND	5.0	10	
1,3-Dichlorobenzene	ND	5.0	10		Pyrene				5.0	10	
1,4-Dichlorobenzene		5.0	10		Pyridine				5.0	10	
3,3-Dichlorophenel		100	10		1,2,4-Trichlord	Denzene			5.0	10	
Z,4-Dichiorophenol		5.U 5.0	10		2,4,0-1110111010 2.4.5-Trichloro	phenol			5.U 5.0	10	
Dimethyl Phthalate		5.0	10		2,4,5-1101000			U	5.0	10	
		0.0 Control	10	al	Surrocotoo			REC (0/)	Control	r	
Surrogates:	<u>reu (%)</u>	Limits	<u>QU</u>	<u>ai</u>	Surroyates:			<u>NEC (%)</u>	Limits	<u>c</u>	<u>kual</u>
2-Fluorobiphenyl	69	38-134			2-Fluoropheno	bl		64	42-120		
Nitrobenzene-d5	60	42-150			p-Terphenyl-d	14		104	35-167		
Phonol-d6	70	46-118			2 / 6-Tribrom			57	36-132		
		10 110			∠, ч ,0-11010000				30 102		

RL - Reporting Limit ,

n M

DF - Dilution Factor

Qual - Qualifiers

Return to Contents

04/11/13

Return to Contents

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA

78 Sunny Brae Center					Work Ord	ler No:				13-	-04-0823				
Arcata, CA 95521-6742		Preparatio	on:				EPA 3545								
				Method											
					Unito:					EP.	A 02700				
					Units:						тту/ку				
Project: Tire Fire Proper	rty									Pag	e 7 of 10				
Client Sample Number			L	ab Sample	Date/Time	Matrix	Instrument	Date	Date/	Time	QC Batch ID				
			40.04	Number	Collected	0			Analy		400440107				
1 ire-Fire-4-0.0°-0.1°			13-04-	•0823-7-В	04/09/13 12:00	50110	GC/MS CCC	; 04/12/13	18:	36	130412L07				
Comment(s): -The reporting limit i	s elevated resu	Ilting from	matrix	interference).										
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>				
Acenaphthene	ND	1.0	2		2,4-Dimethylph	nenol		ND	1.0	2					
Acenaphthylene	ND	1.0	2		4,6-Dinitro-2-N	1ethylphen	ol	ND	5.0	2					
Aniline	ND	1.0	2		2,4-Dinitropher	nol		ND	5.0	2					
Anthracene	ND	1.0	2		2,4-Dinitrotolue	ene		ND	1.0	2					
Azobenzene	ND	1.0	2		2,6-Dinitrotolue	ene		ND	1.0	2					
Benzidine	ND	20	2		Fluoranthene			ND	1.0	2					
Benzo (a) Anthracene	ND	1.0	2		Fluorene			ND	1.0	2					
Benzo (a) Pyrene	ND	1.0	2		Hexachloro-1,3	3-Butadien	e	ND	1.0	2					
Benzo (b) Fluoranthene	ND	1.0	2		Hexachloroben	nzene		ND	1.0	2					
Benzo (g,h,i) Perylene	ND	1.0	2		Hexachlorocyc	lopentadie	ene	ND	5.0	2					
Benzo (k) Fluoranthene	ND	1.0	2		Hexachloroetha	ane		ND	1.0	2					
Benzoic Acid	ND	5.0	2		Indeno (1,2,3-0	c,d) Pyren	е	ND	1.0	2					
Benzyl Alcohol	ND	1.0	2		Isophorone			ND	1.0	2					
Bis(2-Chloroethoxy) Methane	ND	1.0	2		2-Methylnaphth	halene		ND	1.0	2					
Bis(2-Chloroethyl) Ether	ND	5.0	2		1-Methylnaphth	halene		ND	1.0	2					
Bis(2-Chloroisopropyl) Ether	ND	1.0	2		2-Methylpheno	bl		ND	1.0	2					
Bis(2-Ethylhexyl) Phthalate	ND	1.0	2		3/4-Methylpher	nol		ND	1.0	2					
4-Bromophenyl-Phenyl Ether	ND	1.0	2		N-Nitroso-di-n-	-propylami	ne	ND	1.0	2					
Butyl Benzyl Phthalate	ND	1.0	2		N-Nitrosodime	thylamine		ND	1.0	2					
4-Chloro-3-Methylphenol	ND	1.0	2		N-Nitrosodiphe	enylamine		ND	1.0	2					
4-Chloroaniline	ND	1.0	2		Naphthalene			ND	1.0	2					
2-Chloronaphthalene	ND	1.0	2		4-Nitroaniline			ND	1.0	2					
2-Chlorophenol	ND	1.0	2		3-Nitroaniline			ND	1.0	2					
4-Chiorophenyi-Phenyi Ether	ND	1.0	2		2-INitroaniline			ND	1.0	2					
Chrysene Dia Duth Dhth slats	ND	1.0	2		Nitrobenzene				5.0	2					
Di-n-Bulyi Phinalale		1.0	2		4-INITOPHENO				1.0	2					
Di-n-Ociyi Philhalale		1.0	2		2-INITOPRENO	onol			1.0	2					
Dibenze(a,fl) Antiliacene		1.0	2		Penlacilloioph	enor			5.0	2					
		1.0	2		Phenal				1.0	2					
1,2-Dichlorobenzene		1.0	2		Prieno				1.0	2					
		1.0	2		Pyreile				1.0	2					
3 3'-Dichlorobenzidine		20	2		1 2 4-Trichloro	honzono			1.0	2					
2 4-Dichlorophenol		20	2		2.4.6-Trichloro	nhenol			1.0	2					
Diethyl Phthalate		1.0	2		2.4.0-Trichloro	nhenol		ND	1.0	2					
Dimethyl Phthalate	ND	1.0	2		<u>_,</u> -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101101			1.0	2					
Surrogatos	REC (0/)	Control	<u>د</u> م	al	Surrogates			RFC (%)	Control	ſ	Jual				
Junugales.		Limits	<u></u>		ourogatos.			<u></u>	Limits	2	<u>~~01</u>				
2-Fluorobiphenyl	54	38-134			2-Fluoropheno	I		48	42-120						
Nitrobenzene-d5	60	42-150			p-Terphenvl-d1	14		84	35-167						
Phenol-d6	63	46-118			246-Tribromo	phenol		56	36-132						
					_, .,										

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

n M

Work Order No:

04/11/13

13-04-0823

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 9

Arcata, CA 95521-6742		Preparation: Method: Units:						EPA 3545 EPA 8270C mg/kg		
Project: Tire Fire Property								Pag	e 8 of 10	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy	Time zed	QC Batch ID	
Tire-Fire-4-0.5'-0.6'		13-04-0823-8-A	04/09/13 12:05	Solid	GC/MS CCC	04/12/13	04/15 19:0	5/13 02	130412L07	
Comment(s): -The reporting limit is elevated re	sulting from	matrix interference	9.							
Parameter Result	<u>RL</u>	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	DF	Qual	
Acenaphthene ND	2.5	5	2,4-Dimethylph	enol		ND	2.5	5		
Acenaphthylene ND	2.5	5	4,6-Dinitro-2-M	ethylpheno	bl	ND	12	5		
Aniline ND	2.5	5	2,4-Dinitrophen	nol		ND	12	5		
Anthracene ND	2.5	5	2,4-Dinitrotolue	ne		ND	2.5	5		
Azobenzene ND	2.5	5	2,6-Dinitrotolue	ene		ND	2.5	5		
Benzidine ND	50	5	Fluoranthene			ND	2.5	5		
Benzo (a) Anthracene ND	2.5	5	Fluorene			ND	2.5	5		
Benzo (a) Pyrene ND	2.5	5	Hexachloro-1,3	-Butadiene	9	ND	2.5	5		
Benzo (b) Fluoranthene ND	2.5	5	Hexachloroben	zene		ND	2.5	5		
Benzo (g,h,i) Perylene ND	2.5	5	Hexachlorocycl	opentadier	ne	ND	12	5		
Benzo (k) Fluoranthene ND	2.5	5	Hexachloroetha	ane		ND	2.5	5		
Benzoic Acid ND	12	5	Indeno (1,2,3-c	,d) Pyrene		ND	2.5	5		
Benzyl Alcohol ND	2.5	5	Isophorone			ND	2.5	5		
Bis(2-Chloroethoxy) Methane ND	2.5	5	2-Methylnaphth	nalene		ND	2.5	5		
Bis(2-Chloroethyl) Ether ND	12	5	1-Methylnaphth	alene		ND	2.5	5		
Bis(2-Chloroisopropyl) Ether ND	2.5	5	2-Methylphenol			ND	2.5	5		
Bis(2-Ethylhexyl) Phthalate ND	2.5	5	3/4-Methylpher	nol		ND	2.5	5		
4-Bromophenyl-Phenyl Ether ND	2.5	5	N-Nitroso-di-n-	propylamir	e	ND	2.5	5		
Butyl Benzyl Phthalate ND	2.5	5	N-Nitrosodimet	hylamine		ND	2.5	5		
4-Chloro-3-Methylphenol ND	2.5	5	N-Nitrosodiphe	nylamine		ND	2.5	5		
4-Chloroaniline ND	2.5	5	Naphthalene			ND	2.5	5		
2-Chloronaphthalene ND	2.5	5	4-Nitroaniline			ND	2.5	5		
2-Chlorophenol ND	2.5	5	3-Nitroaniline			ND	2.5	5		
4-Chlorophenyl-Phenyl Ether ND	2.5	5	2-Nitroaniline			ND	2.5	5		
Chrysene ND	2.5	5	Nitrobenzene			ND	12	5		
Di-n-Butyl Phthalate ND	2.5	5	4-Nitrophenol			ND	2.5	5		
Di-n-Octyl Phthalate ND	2.5	5	2-Nitrophenol			ND	2.5	5		
Dibenz (a,h) Anthracene ND	2.5	5	Pentachlorophe	enol		ND	12	5		
Dibenzofuran ND	2.5	5	Phenanthrene			ND	2.5	5		
1,2-Dichlorobenzene ND	2.5	5	Phenol			ND	2.5	5		
1,3-Dichlorobenzene ND	2.5	5	Pyrene			ND	2.5	5		
1,4-Dichlorobenzene ND	2.5	5	Pyridine			ND	2.5	5		
3,3'-Dichlorobenzidine ND	50	5	1,2,4-Trichlorol	oenzene		ND	2.5	5		
2,4-Dichlorophenol ND	2.5	5	2,4,6-Trichloro	phenol		ND	2.5	5		
Diethyl Phthalate ND	2.5	5	2,4,5-Trichloro	phenol		ND	2.5	5		
Dimethyl Phthalate ND	2.5	5								
Surrogates: REC (%	<u>)</u> <u>Control</u> <u>Limits</u>	<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>	
2-Fluorobiphenyl 72	38-134		2-Fluorophenol			69	42-120			
Nitrobenzene-d5 65	42-150		p-Terphenyl-d1	4		106	35-167			
Phenol-d6 74	46-118		2,4,6-Tribromo	phenol		52	36-132			

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers

Page 21 of 56

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C
Units:	mg/kg
	Page 9 of 10

Project: Tire Fire Property

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	Time /zed	QC Batch ID
Tire-Fire-5-0.0'-0.1'			13	-04-0823-9-B	04/09/13 Solid GC 11:30		GC/MS CCC	04/12/13	04/15/13 17:43		130412L07
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	RL	DF	Qual
Acenaphthene	ND	0.50	1		2,4-Dimethylp	henol		ND	0.50	1	
Acenaphthylene	ND	0.50	1		4,6-Dinitro-2-M	Methylphen	ol	ND	2.5	1	
Aniline	ND	0.50	1		2,4-Dinitrophe	enol		ND	2.5	1	
Anthracene	ND	0.50	1		2,4-Dinitrotolu	ene		ND	0.50	1	
Azobenzene	ND	0.50	1		2,6-Dinitrotolu	ene		ND	0.50	1	
Benzidine	ND	10	1		Fluoranthene			ND	0.50	1	
Benzo (a) Anthracene	ND	0.50	1		Fluorene			ND	0.50	1	
Benzo (a) Pyrene	ND	0.50	1		Hexachloro-1,	3-Butadien	е	ND	0.50	1	
Benzo (b) Fluoranthene	ND	0.50	1		Hexachlorobe	nzene		ND	0.50	1	
Benzo (g,h,i) Perylene	ND	0.50	1		Hexachlorocyd	clopentadie	ne	ND	2.5	1	
Benzo (k) Fluoranthene	ND	0.50	1		Hexachloroeth	nane		ND	0.50	1	
Benzoic Acid	ND	2.5	1		Indeno (1,2,3-	c,d) Pyrene	e	ND	0.50	1	
Benzyl Alcohol	ND	0.50	1		Isophorone			ND	0.50	1	
Bis(2-Chloroethoxy) Methane	ND	0.50	1		2-Methylnapht	thalene		ND	0.50	1	
Bis(2-Chloroethyl) Ether	ND	2.5	1		1-Methylnapht	thalene		ND	0.50	1	
Bis(2-Chloroisopropyl) Ether	ND	0.50	1		2-Methylpheno	ol		ND	0.50	1	
Bis(2-Ethylhexyl) Phthalate	2.8	0.50	1		3/4-Methylphe	enol		ND	0.50	1	
4-Bromophenyl-Phenyl Ether	ND	0.50	1		N-Nitroso-di-n	n-propylamii	ne	ND	0.50	1	
Butyl Benzyl Phthalate	ND	0.50	1		N-Nitrosodime	ethylamine		ND	0.50	1	
4-Chloro-3-Methylphenol	ND	0.50	1		N-Nitrosodiph	enylamine		ND	0.50	1	
4-Chloroaniline	ND	0.50	1		Naphthalene			ND	0.50	1	
2-Chloronaphthalene	ND	0.50	1		4-Nitroaniline			ND	0.50	1	
2-Chlorophenol	ND	0.50	1		3-Nitroaniline			ND	0.50	1	
4-Chlorophenyl-Phenyl Ether	ND	0.50	1		2-Nitroaniline			ND	0.50	1	
Chrysene	ND	0.50	1		Nitrobenzene			ND	2.5	1	
Di-n-Butyl Phthalate	ND	0.50	1		4-Nitrophenol			ND	0.50	1	
Di-n-Octyl Phthalate	ND	0.50	1		2-Nitrophenol			ND	0.50	1	
Dibenz (a,h) Anthracene	ND	0.50	1		Pentachloroph	nenol		ND	2.5	1	
Dibenzofuran	ND	0.50	1		Phenanthrene	;		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Phenol			ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Pyrene			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Pyridine			ND	0.50	1	
3.3'-Dichlorobenzidine	ND	10	1		1.2.4-Trichlor	obenzene		ND	0.50	1	
2.4-Dichlorophenol	ND	0.50	1		2.4.6-Trichlord	ophenol		ND	0.50	1	
Diethyl Phthalate	ND	0.50	1		2.4.5-Trichlord	lonend		ND	0.50	1	
Dimethyl Phthalate	ND	0.50	1		, .,	-1		_	2.00	•	
Surrogates:	<u>REC (%)</u>	Control Limits	•	<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	Qual
2-Eluorobiphenvl	72	38-134			2-Eluoropheno	ol		88	42-120		
Nitrobenzene-d5	79	42-150			n-Ternhonyl d	11		96	35-167		
	07	46 110				. 1 4		100	26 122		
Phenol-db	97	40-118			∠,4,6-I ribrom	opnenol		100	30-132		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulhan

Analytical Report

nelac

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C
Units:	mg/kg
	Page 10 of 10

Project: Tire Fire Property

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	Гime ⁄zed	QC Batch ID
Method Blank			099	-12-549-2,450	N/A	Solid	GC/MS CCC	04/12/13	04/15 12:	5/13 54	130412L07
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acenaphthene	ND	0.50	1		2,4-Dimethylpl	henol		ND	0.50	1	
Acenaphthylene	ND	0.50	1		4,6-Dinitro-2-N	/lethylphene	ol	ND	2.5	1	
Aniline	ND	0.50	1		2,4-Dinitrophe	nol		ND	2.5	1	
Anthracene	ND	0.50	1		2,4-Dinitrotolu	ene		ND	0.50	1	
Azobenzene	ND	0.50	1		2,6-Dinitrotolu	ene		ND	0.50	1	
Benzidine	ND	10	1		Fluoranthene			ND	0.50	1	
Benzo (a) Anthracene	ND	0.50	1		Fluorene			ND	0.50	1	
Benzo (a) Pyrene	ND	0.50	1		Hexachloro-1,3	3-Butadien	Э	ND	0.50	1	
Benzo (b) Fluoranthene	ND	0.50	1		Hexachlorober	nzene		ND	0.50	1	
Benzo (g,h,i) Perylene	ND	0.50	1		Hexachlorocyc	lopentadie	ne	ND	2.5	1	
Benzo (k) Fluoranthene	ND	0.50	1		Hexachloroeth	ane		ND	0.50	1	
Benzoic Acid	ND	2.5	1		Indeno (1,2,3-	c,d) Pyrene)	ND	0.50	1	
Benzyl Alcohol	ND	0.50	1		Isophorone			ND	0.50	1	
Bis(2-Chloroethoxy) Methane	ND	0.50	1		2-Methylnapht	halene		ND	0.50	1	
Bis(2-Chloroethyl) Ether	ND	2.5	1		1-Methylnapht	halene		ND	0.50	1	
Bis(2-Chloroisopropyl) Ether	ND	0.50	1		2-Methylpheno	bl		ND	0.50	1	
Bis(2-Ethylhexyl) Phthalate	ND	0.50	1		3/4-Methylphe	nol		ND	0.50	1	
4-Bromophenyl-Phenyl Ether	ND	0.50	1		N-Nitroso-di-n	-propylamir	ne	ND	0.50	1	
Butyl Benzyl Phthalate	ND	0.50	1		N-Nitrosodime	thylamine		ND	0.50	1	
4-Chloro-3-Methylphenol	ND	0.50	1		N-Nitrosodiphe	enylamine		ND	0.50	1	
4-Chloroaniline	ND	0.50	1		Naphthalene	-		ND	0.50	1	
2-Chloronaphthalene	ND	0.50	1		4-Nitroaniline			ND	0.50	1	
2-Chlorophenol	ND	0.50	1		3-Nitroaniline			ND	0.50	1	
4-Chlorophenyl-Phenyl Ether	ND	0.50	1		2-Nitroaniline			ND	0.50	1	
Chrysene	ND	0.50	1		Nitrobenzene			ND	2.5	1	
Di-n-Butyl Phthalate	ND	0.50	1		4-Nitrophenol			ND	0.50	1	
Di-n-Octyl Phthalate	ND	0.50	1		2-Nitrophenol			ND	0.50	1	
Dibenz (a,h) Anthracene	ND	0.50	1		Pentachloroph	ienol		ND	2.5	1	
Dibenzofuran	ND	0.50	1		Phenanthrene			ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Phenol			ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Pyrene			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Pyridine			ND	0.50	1	
3,3'-Dichlorobenzidine	ND	10	1		1,2,4-Trichlord	benzene		ND	0.50	1	
2,4-Dichlorophenol	ND	0.50	1		2,4,6-Trichlord	phenol		ND	0.50	1	
Diethyl Phthalate	ND	0.50	1		2,4,5-Trichlord	phenol		ND	0.50	1	
Dimethyl Phthalate	ND	0.50	1			•					
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	Qual
2-Fluorobiphenvl	79	38-134			2-Fluoropheno	bl		79	42-120		
Nitrobenzene-d5	82	42-150			n-Ternhenvl-d	14		88	35-167		
	89	16-119			246 Tribrom	n-T Anhonol		57	36-132		
	03	+0-110			∠,4,0-1 ribrom	phenol		51	30-132		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 23 of 56

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 1 of 10

Project: Tire Fire Property

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy	⊺ime zed	QC Batch ID
Tire-Fire-1-0.0'-0.1'			13-04-0823-1-G		04/09/13 11:00	Solid	GC/MS W	04/09/13	04/17/13 14:20		130417L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone	ND	65	1.3		c-1,3-Dichloro	propene		ND	1.3	1.3	
Benzene	ND	1.3	1.3		t-1,3-Dichlorop	propene		ND	2.6	1.3	
Bromobenzene	ND	1.3	1.3		Ethylbenzene	•		ND	1.3	1.3	
Bromochloromethane	ND	2.6	1.3		2-Hexanone			ND	26	1.3	
Bromodichloromethane	ND	1.3	1.3		Isopropylbenze	ene		ND	1.3	1.3	
Bromoform	ND	6.5	1.3		p-Isopropyltolu	iene		ND	1.3	1.3	
Bromomethane	ND	26	1.3		Methylene Chl	oride		ND	13	1.3	
2-Butanone	ND	26	1.3		4-Methyl-2-Pe	ntanone		ND	26	1.3	
n-Butylbenzene	ND	1.3	1.3		Naphthalene			ND	13	1.3	
sec-Butylbenzene	ND	1.3	1.3		n-Propylbenze	ne		ND	2.6	1.3	
tert-Butylbenzene	ND	1.3	1.3		Styrene			ND	1.3	1.3	
Carbon Disulfide	ND	13	1.3		1,1,1,2-Tetrac	hloroethane		ND	1.3	1.3	
Carbon Tetrachloride	ND	1.3	1.3		1,1,2,2-Tetrac	hloroethane		ND	2.6	1.3	
Chlorobenzene	ND	1.3	1.3		Tetrachloroeth	ene		ND	1.3	1.3	
Chloroethane	ND	2.6	1.3		Toluene			ND	1.3	1.3	
Chloroform	ND	1.3	1.3		1,2,3-Trichlord	benzene		ND	2.6	1.3	
Chloromethane	ND	26	1.3		1,2,4-Trichlord	benzene		ND	2.6	1.3	
2-Chlorotoluene	ND	1.3	1.3		1,1,1-Trichlord	bethane		ND	1.3	1.3	
4-Chlorotoluene	ND	1.3	1.3		1,1,2-Trichlord	bethane		ND	1.3	1.3	
Dibromochloromethane	ND	2.6	1.3		1,1,2-Trichlord	o-1,2,2-Triflu	loroethane	ND	13	1.3	
1,2-Dibromo-3-Chloropropane	ND	6.5	1.3		Trichloroethen	е		ND	2.6	1.3	
1,2-Dibromoethane	ND	1.3	1.3		Trichlorofluoro	methane		ND	13	1.3	
Dibromomethane	ND	1.3	1.3		1,2,3-Trichlord	propane		ND	2.6	1.3	
1,2-Dichlorobenzene	ND	1.3	1.3		1,2,4-Trimethy	lbenzene		ND	2.6	1.3	
1,3-Dichlorobenzene	ND	1.3	1.3		1,3,5-Trimethy	lbenzene		ND	2.6	1.3	
1,4-Dichlorobenzene	ND	1.3	1.3		Vinyl Acetate			ND	13	1.3	
Dichlorodifluoromethane	ND	2.6	1.3		Vinyl Chloride			ND	1.3	1.3	
1,1-Dichloroethane	ND	1.3	1.3		p/m-Xylene			ND	2.6	1.3	
1,2-Dichloroethane	ND	1.3	1.3		o-Xylene			ND	1.3	1.3	
1,1-Dichloroethene	ND	1.3	1.3		Methyl-t-Butyl	Ether (MTB	E)	ND	2.6	1.3	
c-1,2-Dichloroethene	ND	1.3	1.3		Tert-Butyl Alco	ohol (TBA)		ND	26	1.3	
t-1,2-Dichloroethene	ND	1.3	1.3		Diisopropyl Eth	her (DIPE)		ND	1.3	1.3	
1,2-Dichloropropane	ND	1.3	1.3		Ethyl-t-Butyl E	ther (ETBE))	ND	1.3	1.3	
1,3-Dichloropropane	ND	1.3	1.3		Tert-Amyl-Met	hyl Ether (T	AME)	ND	1.3	1.3	
2,2-Dichloropropane	ND	6.5	1.3		Ethanol			ND	650	1.3	
1,1-Dichloropropene	ND	2.6	1.3								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>ll</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	87	80-120			Dibromofluoro	methane		105	79-133		
1,2-Dichloroethane-d4	114	71-155			Toluene-d8			98	80-120		

MM

Qual - Qualifiers

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 2 of 10

Project: Tire Fire Property

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy:	ime zed	QC Batch ID
Tire-Fire-1-0.5'-0.6'			13-04-0	823-2-C	04/09/13 11:20	Solid	GC/MS W	04/09/13	04/17 16:3	/13 32	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	42	0.833		c-1,3-Dichloro	propene		ND	0.83	0.83	33
Benzene	ND	0.83	0.833		t-1,3-Dichloro	propene		ND	1.7	0.83	33
Bromobenzene	ND	0.83	0.833		Ethylbenzene			ND	0.83	0.83	33
Bromochloromethane	ND	1.7	0.833		2-Hexanone			ND	17	0.83	33
Bromodichloromethane	ND	0.83	0.833		Isopropylbenz	ene		ND	0.83	0.83	33
Bromoform	ND	4.2	0.833		p-Isopropyltolu	Jene		ND	0.83	0.83	33
Bromomethane	ND	17	0.833		Methylene Ch	loride		ND	8.3	0.83	33
2-Butanone	ND	17	0.833		4-Methyl-2-Pe	ntanone		ND	17	0.83	33
n-Butylbenzene	ND	0.83	0.833		Naphthalene			ND	8.3	0.83	33
sec-Butylbenzene	ND	0.83	0.833		n-Propylbenze	ene		ND	1.7	0.83	33
tert-Butylbenzene	ND	0.83	0.833		Styrene			ND	0.83	0.83	33
Carbon Disulfide	ND	8.3	0.833		1,1,1,2-Tetrac	hloroethane	•	ND	0.83	0.83	33
Carbon Tetrachloride	ND	0.83	0.833		1,1,2,2-Tetrac	hloroethane	•	ND	1.7	0.83	33
Chlorobenzene	ND	0.83	0.833		Tetrachloroeth	nene		ND	0.83	0.83	33
Chloroethane	ND	1.7	0.833		Toluene			ND	0.83	0.83	33
Chloroform	ND	0.83	0.833		1,2,3-Trichlor	obenzene		ND	1.7	0.83	33
Chloromethane	ND	17	0.833		1,2,4-Trichlor	obenzene		ND	1.7	0.83	33
2-Chlorotoluene	ND	0.83	0.833		1,1,1-Trichlor	oethane		ND	0.83	0.83	33
4-Chlorotoluene	ND	0.83	0.833		1,1,2-Trichloro	oethane		ND	0.83	0.83	33
Dibromochloromethane	ND	1.7	0.833		1,1,2-Trichloro	o-1,2,2-Triflu	uoroethane	ND	8.3	0.83	33
1,2-Dibromo-3-Chloropropane	ND	4.2	0.833		Trichloroether	ne		ND	1.7	0.83	33
1,2-Dibromoethane	ND	0.83	0.833		Trichlorofluoro	omethane		ND	8.3	0.83	33
Dibromomethane	ND	0.83	0.833		1,2,3-Trichloro	opropane		ND	1.7	0.83	33
1,2-Dichlorobenzene	ND	0.83	0.833		1,2,4-Trimethy	lbenzene		ND	1.7	0.83	33
1,3-Dichlorobenzene	ND	0.83	0.833		1,3,5-Trimethy	ylbenzene		ND	1.7	0.83	33
1,4-Dichlorobenzene	ND	0.83	0.833		Vinyl Acetate			ND	8.3	0.83	33
Dichlorodifluoromethane	ND	1.7	0.833		Vinyl Chloride			ND	0.83	0.83	33
1,1-Dichloroethane	ND	0.83	0.833		p/m-Xylene			ND	1.7	0.83	33
1,2-Dichloroethane	ND	0.83	0.833		o-Xylene			ND	0.83	0.83	33
1,1-Dichloroethene	ND	0.83	0.833		Methyl-t-Butyl	Ether (MTE	BE)	ND	1.7	0.83	33
c-1,2-Dichloroethene	ND	0.83	0.833		Tert-Butyl Alco	ohol (TBA)		ND	17	0.83	33
t-1,2-Dichloroethene	ND	0.83	0.833		Diisopropyl Et	her (DIPE)		ND	0.83	0.83	33
1,2-Dichloropropane	ND	0.83	0.833		Ethyl-t-Butyl E	ther (ETBE)	ND	0.83	0.83	33
1,3-Dichloropropane	ND	0.83	0.833		Tert-Amyl-Met	thyl Ether (T	AME)	ND	0.83	0.83	33
2,2-Dichloropropane	ND	4.2	0.833		Ethanol			ND	420	0.83	33
1,1-Dichloropropene	ND	1.7	0.833								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>I</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	lual
1,4-Bromofluorobenzene	96	80-120			Dibromofluoro	methane		106	79-133		
1,2-Dichloroethane-d4	120	71-155			Toluene-d8			99	80-120		

Page 25 of 56

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 3 of 10

Project: Tire Fire Property

Client Sample Number			Lal N	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ïme zed	QC Batch ID
Tire-Fire-2-0.0'-0.1'			13-04-0	823-3-C	04/09/13 12:10	Solid	GC/MS W	04/09/13	04/17/ 17:0	/13 1	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone	67	42	0.839		c-1,3-Dichloro	propene		ND	0.84	0.83	9
Benzene	ND	0.84	0.839		t-1,3-Dichlorop	propene		ND	1.7	0.83	9
Bromobenzene	ND	0.84	0.839		Ethylbenzene	•		ND	0.84	0.83	9
Bromochloromethane	ND	1.7	0.839		2-Hexanone			ND	17	0.83	9
Bromodichloromethane	ND	0.84	0.839		Isopropylbenz	ene		ND	0.84	0.83	9
Bromoform	ND	4.2	0.839		p-Isopropyltolu	lene		ND	0.84	0.83	9
Bromomethane	ND	17	0.839		Methylene Chl	oride		ND	8.4	0.83	9
2-Butanone	ND	17	0.839		4-Methyl-2-Pe	ntanone		ND	17	0.83	9
n-Butylbenzene	ND	0.84	0.839		Naphthalene			ND	8.4	0.83	9
sec-Butylbenzene	ND	0.84	0.839		n-Propylbenze	ene		ND	1.7	0.83	9
tert-Butylbenzene	ND	0.84	0.839		Styrene			ND	0.84	0.83	9
Carbon Disulfide	ND	8.4	0.839		1,1,1,2-Tetrac	hloroethane		ND	0.84	0.83	9
Carbon Tetrachloride	ND	0.84	0.839		1,1,2,2-Tetrac	hloroethane		ND	1.7	0.83	9
Chlorobenzene	ND	0.84	0.839		Tetrachloroeth	nene		ND	0.84	0.83	9
Chloroethane	ND	1.7	0.839		Toluene			ND	0.84	0.83	9
Chloroform	ND	0.84	0.839		1,2,3-Trichloro	obenzene		ND	1.7	0.83	9
Chloromethane	ND	17	0.839		1,2,4-Trichlord	obenzene		ND	1.7	0.83	9
2-Chlorotoluene	ND	0.84	0.839		1,1,1-Trichloro	bethane		ND	0.84	0.83	9
4-Chlorotoluene	ND	0.84	0.839		1,1,2-Trichloro	bethane		ND	0.84	0.83	9
Dibromochloromethane	ND	1.7	0.839		1,1,2-Trichloro	o-1,2,2-Triflu	loroethane	ND	8.4	0.83	9
1,2-Dibromo-3-Chloropropane	ND	4.2	0.839		Trichloroethen	e		ND	1.7	0.83	9
1,2-Dibromoethane	ND	0.84	0.839		Trichlorofluoro	omethane		ND	8.4	0.83	9
Dibromomethane	ND	0.84	0.839		1,2,3-Trichloro	opropane		ND	1.7	0.83	9
1,2-Dichlorobenzene	ND	0.84	0.839		1,2,4-Trimethy	/lbenzene		ND	1.7	0.83	9
1,3-Dichlorobenzene	ND	0.84	0.839		1,3,5-Trimethy	/lbenzene		ND	1.7	0.83	9
1,4-Dichlorobenzene	ND	0.84	0.839		Vinyl Acetate			ND	8.4	0.83	9
Dichlorodifluoromethane	ND	1.7	0.839		Vinyl Chloride			ND	0.84	0.83	9
1,1-Dichloroethane	ND	0.84	0.839		p/m-Xylene			ND	1.7	0.83	9
1,2-Dichloroethane	ND	0.84	0.839		o-Xylene			ND	0.84	0.83	9
1,1-Dichloroethene	ND	0.84	0.839		Methyl-t-Butyl	Ether (MTB	E)	ND	1.7	0.83	9
c-1,2-Dichloroethene	ND	0.84	0.839		Tert-Butyl Alco	ohol (TBA)		ND	17	0.83	9
t-1,2-Dichloroethene	ND	0.84	0.839		Diisopropyl Et	her (DIPE)		ND	0.84	0.83	9
1,2-Dichloropropane	ND	0.84	0.839		Ethyl-t-Butyl E	ther (ETBE)	ND	0.84	0.83	9
1,3-Dichloropropane	ND	0.84	0.839		Tert-Amyl-Met	thyl Ether (T	AME)	ND	0.84	0.83	9
2,2-Dichloropropane	ND	4.2	0.839		Ethanol			ND	420	0.83	9
1,1-Dichloropropene	ND	1.7	0.839								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>I</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	<u>ual</u>
1,4-Bromofluorobenzene	98	80-120			Dibromofluoro	methane		107	79-133		
1,2-Dichloroethane-d4	119	71-155			Toluene-d8			99	80-120		

MM

Return to Contents

Page 26 of 56

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 4 of 10

Project: Tire Fire Property

Client Sample Number			Lat N	o Sample Iumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime zed	QC Batch ID
Tire-Fire-2-0.5'-0.6'			13-04-0	823-4-C	04/09/13 12:20	Solid	GC/MS W	04/09/13	04/17/ 17:3	'13 1	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	47	0.947		c-1,3-Dichlorop	ropene		ND	0.95	0.94	7
Benzene	ND	0.95	0.947		t-1,3-Dichlorop	ropene		ND	1.9	0.94	7
Bromobenzene	ND	0.95	0.947		Ethylbenzene			ND	0.95	0.94	7
Bromochloromethane	ND	1.9	0.947		2-Hexanone			ND	19	0.94	7
Bromodichloromethane	ND	0.95	0.947		Isopropylbenze	ne		ND	0.95	0.94	7
Bromoform	ND	4.7	0.947		p-Isopropyltolue	ene		ND	0.95	0.94	7
Bromomethane	ND	19	0.947		Methylene Chlo	ride		ND	9.5	0.94	7
2-Butanone	ND	19	0.947		4-Methyl-2-Pen	tanone		ND	19	0.94	7
n-Butylbenzene	ND	0.95	0.947		Naphthalene			ND	9.5	0.94	7
sec-Butylbenzene	ND	0.95	0.947		n-Propylbenzer	e		ND	1.9	0.94	7
tert-Butylbenzene	ND	0.95	0.947		Styrene			ND	0.95	0.94	7
Carbon Disulfide	ND	9.5	0.947		1,1,1,2-Tetrach	loroethane		ND	0.95	0.94	7
Carbon Tetrachloride	ND	0.95	0.947		1,1,2,2-Tetrach	loroethane		ND	1.9	0.94	7
Chlorobenzene	ND	0.95	0.947		Tetrachloroethe	ene		ND	0.95	0.94	7
Chloroethane	ND	1.9	0.947		Toluene			ND	0.95	0.94	7
Chloroform	ND	0.95	0.947		1,2,3-Trichlorob	benzene		ND	1.9	0.94	7
Chloromethane	ND	19	0.947		1,2,4-Trichlorot	oenzene		ND	1.9	0.94	7
2-Chlorotoluene	ND	0.95	0.947		1,1,1-Trichloroe	ethane		ND	0.95	0.94	7
4-Chlorotoluene	ND	0.95	0.947		1,1,2-Trichloroe	ethane		ND	0.95	0.94	7
Dibromochloromethane	ND	1.9	0.947		1,1,2-Trichloro-	1,2,2-Triflu	oroethane	ND	9.5	0.94	7
1,2-Dibromo-3-Chloropropane	ND	4.7	0.947		Trichloroethene	;		ND	1.9	0.94	7
1,2-Dibromoethane	ND	0.95	0.947		Trichlorofluoror	nethane		ND	9.5	0.94	7
Dibromomethane	ND	0.95	0.947		1,2,3-Trichlorop	oropane		ND	1.9	0.94	7
1,2-Dichlorobenzene	ND	0.95	0.947		1,2,4-Trimethyl	benzene		ND	1.9	0.94	7
1,3-Dichlorobenzene	ND	0.95	0.947		1,3,5-Trimethyl	benzene		ND	1.9	0.94	7
1,4-Dichlorobenzene	ND	0.95	0.947		Vinyl Acetate			ND	9.5	0.94	7
Dichlorodifluoromethane	ND	1.9	0.947		Vinyl Chloride			ND	0.95	0.94	7
1,1-Dichloroethane	ND	0.95	0.947		p/m-Xylene			ND	1.9	0.94	7
1,2-Dichloroethane	ND	0.95	0.947		o-Xylene			ND	0.95	0.94	7
1,1-Dichloroethene	ND	0.95	0.947		Methyl-t-Butyl E	ther (MTB	E)	ND	1.9	0.94	7
c-1,2-Dichloroethene	ND	0.95	0.947		Tert-Butyl Alcol	hol (TBA)		ND	19	0.94	7
t-1,2-Dichloroethene	ND	0.95	0.947		Diisopropyl Eth	er (DIPE)		ND	0.95	0.94	7
1,2-Dichloropropane	ND	0.95	0.947		Ethyl-t-Butyl Et	her (ETBE)		ND	0.95	0.94	7
1,3-Dichloropropane	ND	0.95	0.947		Tert-Amyl-Meth	yl Ether (T	AME)	ND	0.95	0.94	7
2,2-Dichloropropane	ND	4.7	0.947		Ethanol			ND	470	0.94	7
1,1-Dichloropropene	ND	1.9	0.947								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	98	80-120			Dibromofluoron	nethane		105	79-133		
1,2-Dichloroethane-d4	120	71-155			Toluene-d8			99	80-120		

RL - Reporting Limit , DF - Dilution Factor

MM

Qual - Qualifiers ,

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	
Work Order No:	
Preparation:	
Method:	
Units:	

13-04-0823
EPA 5035
EPA 8260B
ug/kg

Page 5 of 10

04/11/13

Project: Tire Fire Property

Client Sample Number			Lat N	o Sample Iumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime zed	QC Batch ID
Tire-Fire-3-0.0'-0.1'			13-04-0	823-5-C	04/09/13 11:35	Solid	GC/MS W	04/09/13	04/17/ 18:0	/13 0	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	150	45	0.898		c-1,3-Dichlorop	ropene		ND	0.90	0.89	8
Benzene	ND	0.90	0.898		t-1,3-Dichlorop	ropene		ND	1.8	0.89	8
Bromobenzene	ND	0.90	0.898		Ethylbenzene			ND	0.90	0.89	8
Bromochloromethane	ND	1.8	0.898		2-Hexanone			ND	18	0.89	8
Bromodichloromethane	ND	0.90	0.898		Isopropylbenze	ne		ND	0.90	0.89	8
Bromoform	ND	4.5	0.898		p-Isopropyltolue	ene		ND	0.90	0.89	8
Bromomethane	ND	18	0.898		Methylene Chlo	ride		ND	9.0	0.89	8
2-Butanone	35	18	0.898		4-Methyl-2-Pen	tanone		ND	18	0.89	8
n-Butylbenzene	ND	0.90	0.898		Naphthalene			ND	9.0	0.89	8
sec-Butylbenzene	ND	0.90	0.898		n-Propylbenzer	ne		ND	1.8	0.89	8
tert-Butylbenzene	ND	0.90	0.898		Styrene			ND	0.90	0.89	8
Carbon Disulfide	ND	9.0	0.898		1,1,1,2-Tetrach	loroethane		ND	0.90	0.89	8
Carbon Tetrachloride	ND	0.90	0.898		1,1,2,2-Tetrach	loroethane		ND	1.8	0.89	8
Chlorobenzene	ND	0.90	0.898		Tetrachloroethe	ene		ND	0.90	0.89	8
Chloroethane	ND	1.8	0.898		Toluene			ND	0.90	0.89	8
Chloroform	ND	0.90	0.898		1,2,3-Trichlorob	benzene		ND	1.8	0.89	8
Chloromethane	ND	18	0.898		1,2,4-Trichlorot	benzene		ND	1.8	0.89	8
2-Chlorotoluene	ND	0.90	0.898		1,1,1-Trichloroe	ethane		ND	0.90	0.89	8
4-Chlorotoluene	ND	0.90	0.898		1,1,2-Trichloroe	ethane		ND	0.90	0.89	8
Dibromochloromethane	ND	1.8	0.898		1,1,2-Trichloro-	1,2,2-Triflu	oroethane	ND	9.0	0.89	8
1,2-Dibromo-3-Chloropropane	ND	4.5	0.898		Trichloroethene	;		ND	1.8	0.89	8
1,2-Dibromoethane	ND	0.90	0.898		Trichlorofluoror	nethane		ND	9.0	0.89	8
Dibromomethane	ND	0.90	0.898		1,2,3-Trichlorop	oropane		ND	1.8	0.89	8
1,2-Dichlorobenzene	ND	0.90	0.898		1,2,4-Trimethyl	benzene		ND	1.8	0.89	8
1,3-Dichlorobenzene	ND	0.90	0.898		1,3,5-Trimethyl	benzene		ND	1.8	0.89	8
1,4-Dichlorobenzene	ND	0.90	0.898		Vinyl Acetate			ND	9.0	0.89	8
Dichlorodifluoromethane	ND	1.8	0.898		Vinyl Chloride			ND	0.90	0.89	8
1,1-Dichloroethane	ND	0.90	0.898		p/m-Xylene			ND	1.8	0.89	8
1,2-Dichloroethane	ND	0.90	0.898		o-Xylene			ND	0.90	0.89	8
1,1-Dichloroethene	ND	0.90	0.898		Methyl-t-Butyl E	ther (MTB	E)	ND	1.8	0.89	8
c-1,2-Dichloroethene	ND	0.90	0.898		Tert-Butyl Alcol	hol (TBA)		ND	18	0.89	8
t-1,2-Dichloroethene	ND	0.90	0.898		Diisopropyl Eth	er (DIPE)		ND	0.90	0.89	8
1,2-Dichloropropane	ND	0.90	0.898		Ethyl-t-Butyl Et	her (ETBE)		ND	0.90	0.89	8
1,3-Dichloropropane	ND	0.90	0.898		Tert-Amyl-Meth	yl Ether (T	AME)	ND	0.90	0.89	8
2,2-Dichloropropane	ND	4.5	0.898		Ethanol			ND	450	0.89	8
1,1-Dichloropropene	ND	1.8	0.898								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	!	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	94	80-120			Dibromofluoron	nethane		105	79-133		
1,2-Dichloroethane-d4	117	71-155			Toluene-d8			97	80-120		

RL - Reporting Limit , DF - Dilution Factor ,

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 6 of 10

Project: Tire Fire Property

Client Sample Number			Lat N	o Sample Iumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime zed	QC Batch ID
Tire-Fire-3-0.5'-0.6'			13-04-0	823-6-C	04/09/13 11:45	Solid	GC/MS W	04/09/13	04/17/ 18:3	/13 0	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone	100	48	0.963		c-1,3-Dichlorop	ropene		ND	0.96	0.96	3
Benzene	ND	0.96	0.963		t-1,3-Dichloropi	ropene		ND	1.9	0.96	3
Bromobenzene	ND	0.96	0.963		Ethylbenzene			ND	0.96	0.96	3
Bromochloromethane	ND	1.9	0.963		2-Hexanone			ND	19	0.96	3
Bromodichloromethane	ND	0.96	0.963		Isopropylbenze	ne		ND	0.96	0.96	3
Bromoform	ND	4.8	0.963		p-Isopropyltolue	ene		ND	0.96	0.96	3
Bromomethane	ND	19	0.963		Methylene Chlo	ride		ND	9.6	0.96	3
2-Butanone	ND	19	0.963		4-Methyl-2-Pen	tanone		ND	19	0.96	3
n-Butylbenzene	ND	0.96	0.963		Naphthalene			ND	9.6	0.96	3
sec-Butylbenzene	ND	0.96	0.963		n-Propylbenzer	ne		ND	1.9	0.96	3
tert-Butylbenzene	ND	0.96	0.963		Styrene			ND	0.96	0.96	3
Carbon Disulfide	ND	9.6	0.963		1,1,1,2-Tetrach	loroethane		ND	0.96	0.96	3
Carbon Tetrachloride	ND	0.96	0.963		1,1,2,2-Tetrach	loroethane		ND	1.9	0.96	3
Chlorobenzene	ND	0.96	0.963		Tetrachloroethe	ene		ND	0.96	0.96	3
Chloroethane	ND	1.9	0.963		Toluene			ND	0.96	0.96	3
Chloroform	ND	0.96	0.963		1,2,3-Trichlorob	benzene		ND	1.9	0.96	3
Chloromethane	ND	19	0.963		1,2,4-Trichlorob	benzene		ND	1.9	0.96	3
2-Chlorotoluene	ND	0.96	0.963		1,1,1-Trichloroe	ethane		ND	0.96	0.96	3
4-Chlorotoluene	ND	0.96	0.963		1,1,2-Trichloroe	ethane		ND	0.96	0.96	3
Dibromochloromethane	ND	1.9	0.963		1,1,2-Trichloro-	1,2,2-Triflu	oroethane	ND	9.6	0.96	3
1,2-Dibromo-3-Chloropropane	ND	4.8	0.963		Trichloroethene	;		ND	1.9	0.96	3
1,2-Dibromoethane	ND	0.96	0.963		Trichlorofluoror	nethane		ND	9.6	0.96	3
Dibromomethane	ND	0.96	0.963		1,2,3-Trichlorop	oropane		ND	1.9	0.96	3
1,2-Dichlorobenzene	ND	0.96	0.963		1,2,4-Trimethyl	benzene		ND	1.9	0.96	3
1,3-Dichlorobenzene	ND	0.96	0.963		1,3,5-Trimethyl	benzene		ND	1.9	0.96	3
1,4-Dichlorobenzene	ND	0.96	0.963		Vinyl Acetate			ND	9.6	0.96	3
Dichlorodifluoromethane	ND	1.9	0.963		Vinyl Chloride			ND	0.96	0.96	3
1,1-Dichloroethane	ND	0.96	0.963		p/m-Xylene			ND	1.9	0.96	3
1,2-Dichloroethane	ND	0.96	0.963		o-Xylene			ND	0.96	0.96	3
1,1-Dichloroethene	ND	0.96	0.963		Methyl-t-Butyl E	Ether (MTB	E)	ND	1.9	0.96	3
c-1,2-Dichloroethene	ND	0.96	0.963		Tert-Butyl Alcol	hol (TBA)		ND	19	0.96	3
t-1,2-Dichloroethene	ND	0.96	0.963		Diisopropyl Eth	er (DIPE)		ND	0.96	0.96	3
1,2-Dichloropropane	ND	0.96	0.963		Ethyl-t-Butyl Et	her (ETBE)	1	ND	0.96	0.96	3
1,3-Dichloropropane	ND	0.96	0.963		Tert-Amyl-Meth	yl Ether (T.	AME)	ND	0.96	0.96	3
2,2-Dichloropropane	ND	4.8	0.963		Ethanol			ND	480	0.96	3
1,1-Dichloropropene	ND	1.9	0.963								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	98	80-120			Dibromofluoron	nethane		106	79-133		
1,2-Dichloroethane-d4	122	71-155			Toluene-d8			99	80-120		

RL - Reporting Limit , DF - Dilution Factor

```
Qual - Qualifiers
,
```

Return to Contents

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 7 of 10

Project: Tire Fire Property

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed		QC Batch ID
Tire-Fire-4-0.0'-0.1'			13-04-0823-7-C		04/09/13 12:00	Solid	GC/MS W	04/09/13	04/17 18:5	/13 i9	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	110	44	0.87		c-1,3-Dichloro	propene		ND	0.87	0.87	
Benzene	ND	0.87	0.87		t-1,3-Dichlorop	propene		ND	1.7	0.87	
Bromobenzene	ND	0.87	0.87		Ethylbenzene			ND	0.87	0.87	
Bromochloromethane	ND	1.7	0.87		2-Hexanone			ND	17	0.87	
Bromodichloromethane	ND	0.87	0.87		Isopropylbenz	ene		ND	0.87	0.87	
Bromoform	ND	4.4	0.87		p-Isopropyltolu	lene		ND	0.87	0.87	
Bromomethane	ND	17	0.87		Methylene Chl	oride		ND	8.7	0.87	
2-Butanone	ND	17	0.87		4-Methyl-2-Pe	ntanone		ND	17	0.87	
n-Butylbenzene	ND	0.87	0.87		Naphthalene			ND	8.7	0.87	
sec-Butylbenzene	ND	0.87	0.87		n-Propylbenze	ene		ND	1.7	0.87	
tert-Butylbenzene	ND	0.87	0.87		Styrene			ND	0.87	0.87	
Carbon Disulfide	ND	8.7	0.87		1,1,1,2-Tetrac	hloroethane		ND	0.87	0.87	
Carbon Tetrachloride	ND	0.87	0.87		1,1,2,2-Tetrac	hloroethane		ND	1.7	0.87	
Chlorobenzene	ND	0.87	0.87		Tetrachloroeth	nene		ND	0.87	0.87	
Chloroethane	ND	1.7	0.87		Toluene			ND	0.87	0.87	
Chloroform	ND	0.87	0.87		1,2,3-Trichloro	obenzene		ND	1.7	0.87	
Chloromethane	ND	17	0.87		1,2,4-Trichloro	obenzene		ND	1.7	0.87	
2-Chlorotoluene	ND	0.87	0.87		1,1,1-Trichloro	bethane		ND	0.87	0.87	
4-Chlorotoluene	ND	0.87	0.87		1,1,2-Trichloro	bethane		ND	0.87	0.87	
Dibromochloromethane	ND	1.7	0.87		1,1,2-Trichloro	o-1,2,2-Triflu	loroethane	ND	8.7	0.87	
1,2-Dibromo-3-Chloropropane	ND	4.4	0.87		Trichloroethen	e		ND	1.7	0.87	
1,2-Dibromoethane	ND	0.87	0.87		Trichlorofluoro	methane		ND	8.7	0.87	
Dibromomethane	ND	0.87	0.87		1,2,3-Trichloro	opropane		ND	1.7	0.87	
1,2-Dichlorobenzene	ND	0.87	0.87		1,2,4-Trimethy	/lbenzene		ND	1.7	0.87	
1,3-Dichlorobenzene	ND	0.87	0.87		1,3,5-Trimethy	/lbenzene		ND	1.7	0.87	
1,4-Dichlorobenzene	ND	0.87	0.87		Vinyl Acetate			ND	8.7	0.87	
Dichlorodifluoromethane	ND	1.7	0.87		Vinyl Chloride			ND	0.87	0.87	
1,1-Dichloroethane	ND	0.87	0.87		p/m-Xylene			ND	1.7	0.87	
1,2-Dichloroethane	ND	0.87	0.87		o-Xylene			ND	0.87	0.87	
1,1-Dichloroethene	ND	0.87	0.87		Methyl-t-Butyl	Ether (MTB	E)	ND	1.7	0.87	
c-1,2-Dichloroethene	ND	0.87	0.87		Tert-Butyl Alco	ohol (TBA)		ND	17	0.87	
t-1,2-Dichloroethene	ND	0.87	0.87		Diisopropyl Et	her (DIPE)		ND	0.87	0.87	
1,2-Dichloropropane	ND	0.87	0.87		Ethyl-t-Butyl E	ther (ETBE)	ND	0.87	0.87	
1,3-Dichloropropane	ND	0.87	0.87		Tert-Amyl-Met	thyl Ether (T	AME)	ND	0.87	0.87	
2,2-Dichloropropane	ND	4.4	0.87		Ethanol			ND	440	0.87	
1,1-Dichloropropene	ND	1.7	0.87								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	96	80-120			Dibromofluoro	methane		107	79-133		
1,2-Dichloroethane-d4	121	71-155			Toluene-d8			99	80-120		

Page 30 of 56

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	
Work Order No:	
Preparation:	
Method:	
Units:	

04/11/13 13-04-0823 EPA 5035 EPA 8260B ug/kg Page 8 of 10

Project: Tire Fire Property

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed		QC Batch ID
Tire-Fire-4-0.5'-0.6'			13-04-0	823-8-C	04/09/13 12:05	Solid	GC/MS W	04/09/13	04/17/ 19:2	/13 9	130417L01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Acetone	52	44	0.877		c-1,3-Dichlorop	oropene		ND	0.88	0.87	7
Benzene	ND	0.88	0.877		t-1,3-Dichlorop	ropene		ND	1.8	0.87	7
Bromobenzene	ND	0.88	0.877		Ethylbenzene			ND	0.88	0.87	7
Bromochloromethane	ND	1.8	0.877		2-Hexanone			ND	18	0.87	7
Bromodichloromethane	ND	0.88	0.877		Isopropylbenze	ene		ND	0.88	0.87	7
Bromoform	ND	4.4	0.877		p-Isopropyltolu	ene		ND	0.88	0.87	7
Bromomethane	ND	18	0.877		Methylene Chlo	oride		ND	8.8	0.87	7
2-Butanone	ND	18	0.877		4-Methyl-2-Per	ntanone		ND	18	0.87	7
n-Butylbenzene	ND	0.88	0.877		Naphthalene			ND	8.8	0.87	7
sec-Butylbenzene	ND	0.88	0.877		n-Propylbenzer	ne		ND	1.8	0.87	7
tert-Butylbenzene	ND	0.88	0.877		Styrene			ND	0.88	0.87	7
Carbon Disulfide	ND	8.8	0.877		1,1,1,2-Tetrach	nloroethane		ND	0.88	0.87	7
Carbon Tetrachloride	ND	0.88	0.877		1,1,2,2-Tetrach	nloroethane		ND	1.8	0.87	7
Chlorobenzene	ND	0.88	0.877		Tetrachloroeth	ene		ND	0.88	0.87	7
Chloroethane	ND	1.8	0.877		Toluene			ND	0.88	0.87	7
Chloroform	ND	0.88	0.877		1,2,3-Trichloro	benzene		ND	1.8	0.87	7
Chloromethane	ND	18	0.877		1,2,4-Trichloro	benzene		ND	1.8	0.87	7
2-Chlorotoluene	ND	0.88	0.877		1,1,1-Trichloro	ethane		ND	0.88	0.87	7
4-Chlorotoluene	ND	0.88	0.877		1,1,2-Trichloro	ethane		ND	0.88	0.87	7
Dibromochloromethane	ND	1.8	0.877		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	8.8	0.87	7
1,2-Dibromo-3-Chloropropane	ND	4.4	0.877		Trichloroethen	е		ND	1.8	0.87	7
1,2-Dibromoethane	ND	0.88	0.877		Trichlorofluoro	methane		ND	8.8	0.87	7
Dibromomethane	ND	0.88	0.877		1,2,3-Trichloro	propane		ND	1.8	0.87	7
1,2-Dichlorobenzene	ND	0.88	0.877		1,2,4-Trimethy	lbenzene		ND	1.8	0.87	7
1,3-Dichlorobenzene	ND	0.88	0.877		1,3,5-Trimethy	lbenzene		ND	1.8	0.87	7
1,4-Dichlorobenzene	ND	0.88	0.877		Vinyl Acetate			ND	8.8	0.87	7
Dichlorodifluoromethane	ND	1.8	0.877		Vinyl Chloride			ND	0.88	0.87	7
1,1-Dichloroethane	ND	0.88	0.877		p/m-Xylene			ND	1.8	0.87	7
1,2-Dichloroethane	ND	0.88	0.877		o-Xylene			ND	0.88	0.87	7
1,1-Dichloroethene	ND	0.88	0.877		Methyl-t-Butyl	Ether (MTB	E)	ND	1.8	0.87	7
c-1,2-Dichloroethene	ND	0.88	0.877		Tert-Butyl Alco	hol (TBA)		ND	18	0.87	7
t-1,2-Dichloroethene	ND	0.88	0.877		Diisopropyl Eth	ner (DIPE)		ND	0.88	0.87	7
1,2-Dichloropropane	ND	0.88	0.877		Ethyl-t-Butyl Et	ther (ETBE)	1	ND	0.88	0.87	7
1,3-Dichloropropane	ND	0.88	0.877		Tert-Amyl-Metl	hyl Ether (T	AME)	ND	0.88	0.87	7
2,2-Dichloropropane	ND	4.4	0.877		Ethanol			ND	440	0.87	7
1,1-Dichloropropene	ND	1.8	0.877								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>I</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	97	80-120			Dibromofluoror	nethane		107	79-133		
1,2-Dichloroethane-d4	122	71-155			Toluene-d8			99	80-120		

 ${\sf RL} \mbox{-} {\sf Reporting \mbox{ Limit }}, \qquad {\sf DF} \mbox{-} {\sf Dilution \mbox{ Factor }},$

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Qual - Qualifiers

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	
Work Order No:	
Preparation:	
Method:	
Units:	

EPA 5035
EPA 8260B
ug/kg
Page 9 of 10

04/11/13

13-04-0823

Project: Tire Fire Property

Client Sample Number		Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed		QC Batch ID
Tire-Fire-5-0.0'-0.1'		13-04-0823-9-C		04/09/13 11:30	Solid	GC/MS W	04/09/13	04/17/ 19:5	/13 8	130417L01
Parameter Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone 160	47	0.942		c-1,3-Dichloro	propene		ND	0.94	0.94	2
Benzene 2.7	0.94	0.942		t-1,3-Dichlorop	propene		ND	1.9	0.94	2
Bromobenzene ND	0.94	0.942		Ethylbenzene			ND	0.94	0.94	2
Bromochloromethane ND	1.9	0.942		2-Hexanone			ND	19	0.94	2
Bromodichloromethane ND	0.94	0.942		Isopropylbenze	ene		ND	0.94	0.94	2
Bromoform ND	4.7	0.942		p-Isopropyltolu	iene		ND	0.94	0.94	2
Bromomethane ND	19	0.942		Methylene Chl	oride		ND	9.4	0.94	2
2-Butanone 26	19	0.942		4-Methyl-2-Per	ntanone		ND	19	0.94	2
n-Butylbenzene ND	0.94	0.942		Naphthalene			ND	9.4	0.94	2
sec-Butylbenzene ND	0.94	0.942		n-Propylbenze	ne		ND	1.9	0.94	2
tert-Butylbenzene ND	0.94	0.942		Styrene			ND	0.94	0.94	2
Carbon Disulfide ND	9.4	0.942		1,1,1,2-Tetrac	hloroethane		ND	0.94	0.94	2
Carbon Tetrachloride ND	0.94	0.942		1,1,2,2-Tetracl	hloroethane		ND	1.9	0.94	2
Chlorobenzene ND	0.94	0.942		Tetrachloroeth	ene		ND	0.94	0.94	2
Chloroethane ND	1.9	0.942		Toluene			1.8	0.94	0.94	2
Chloroform ND	0.94	0.942		1,2,3-Trichloro	benzene		ND	1.9	0.94	2
Chloromethane ND	19	0.942		1,2,4-Trichloro	benzene		ND	1.9	0.94	2
2-Chlorotoluene ND	0.94	0.942		1,1,1-Trichloro	ethane		ND	0.94	0.94	2
4-Chlorotoluene ND	0.94	0.942		1,1,2-Trichloro	ethane		ND	0.94	0.94	2
Dibromochloromethane ND	1.9	0.942		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	9.4	0.94	2
1,2-Dibromo-3-Chloropropane ND	4.7	0.942		Trichloroethen	е		ND	1.9	0.94	2
1,2-Dibromoethane ND	0.94	0.942		Trichlorofluoro	methane		ND	9.4	0.94	2
Dibromomethane ND	0.94	0.942		1,2,3-Trichloro	propane		ND	1.9	0.94	2
1,2-Dichlorobenzene ND	0.94	0.942		1,2,4-Trimethy	lbenzene		ND	1.9	0.94	2
1,3-Dichlorobenzene ND	0.94	0.942		1,3,5-Trimethy	lbenzene		ND	1.9	0.94	2
1,4-Dichlorobenzene ND	0.94	0.942		Vinyl Acetate			ND	9.4	0.94	2
Dichlorodifluoromethane ND	1.9	0.942		Vinyl Chloride			ND	0.94	0.94	2
1,1-Dichloroethane ND	0.94	0.942		p/m-Xylene			ND	1.9	0.94	2
1,2-Dichloroethane ND	0.94	0.942		o-Xylene			ND	0.94	0.94	2
1,1-Dichloroethene ND	0.94	0.942		Methyl-t-Butyl	Ether (MTB	E)	ND	1.9	0.94	2
c-1,2-Dichloroethene ND	0.94	0.942		Tert-Butyl Alco	ohol (TBA)		ND	19	0.94	2
t-1,2-Dichloroethene ND	0.94	0.942		Diisopropyl Eth	ner (DIPE)		ND	0.94	0.94	2
1,2-Dichloropropane ND	0.94	0.942		Ethyl-t-Butyl E	ther (ETBE)	1	ND	0.94	0.94	2
1,3-Dichloropropane ND	0.94	0.942		Tert-Amyl-Met	hyl Ether (T.	AME)	ND	0.94	0.94	2
2,2-Dichloropropane ND	4.7	0.942		Ethanol			ND	470	0.94	2
1,1-Dichloropropene ND	1.9	0.942								
Surrogates: REC (%	Control Limits	<u>Qua</u>	<u>I</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene 96	80-120			Dibromofluoro	methane		105	79-133		
1,2-Dichloroethane-d4 119	71-155			Toluene-d8			99	80-120		

RL - Reporting Limit ,

imit , DF - Dilution Factor

or , Qual - Qualifiers

7440 Lincoln Way, Garden G

Analytical Report

Page 32 of 56

Page 10 of 10

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg

Project: Tire Fire Property

Client Sample Number			Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed		QC Batch ID		
Method Blank			095	-01-025-23,74	8 N/A	Solid	GC/MS W	04/17/13	04/17/13 13:51		130417L01	
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	
Acetone	ND	50	1		c-1,3-Dichlord	propene		ND	1.0	1		
Benzene	ND	1.0	1		t-1,3-Dichloro	propene		ND	2.0	1		
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	1.0	1		
Bromochloromethane	ND	2.0	1		2-Hexanone			ND	20	1		
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1		
Bromoform	ND	5.0	1		p-Isopropyltolu	Jene		ND	1.0	1		
Bromomethane	ND	20	1		Methylene Ch	loride		ND	10	1		
2-Butanone	ND	20	1		4-Methyl-2-Pe	entanone		ND	20	1		
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1		
sec-Butylbenzene	ND	1.0	1		n-Propylbenze	ene		ND	2.0	1		
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1		
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac	hloroethane		ND	1.0	1		
Carbon Tetrachloride	ND	1.0	1		1,1,2,2-Tetrac	hloroethane		ND	2.0	1		
Chlorobenzene	ND	1.0	1		Tetrachloroeth	nene		ND	1.0	1		
Chloroethane	ND	2.0	1		Toluene			ND	1.0	1		
Chloroform	ND	1.0	1		1,2,3-Trichlor	obenzene		ND	2.0	1		
Chloromethane	ND	20	1		1,2,4-Trichlor	obenzene		ND	2.0	1		
2-Chlorotoluene	ND	1.0	1		1,1,1-Trichlor	oethane		ND	1.0	1		
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor	oethane		ND	1.0	1		
Dibromochloromethane	ND	2.0	1		1,1,2-Trichlor	o-1,2,2-Triflu	oroethane	ND	10	1		
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroether	ne		ND	2.0	1		
1,2-Dibromoethane	ND	1.0	1		Trichlorofluoro	omethane		ND	10	1		
Dibromomethane	ND	1.0	1		1,2,3-Trichlor	opropane		ND	2.0	1		
1,2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimethy	vlbenzene		ND	2.0	1		
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimethy	vlbenzene		ND	2.0	1		
1,4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND	10	1		
Dichlorodifluoromethane	ND	2.0	1		Vinyl Chloride			ND	1.0	1		
1,1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	2.0	1		
1,2-Dichloroethane	ND	1.0	1		o-Xylene			ND	1.0	1		
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Butyl	Ether (MTB	E)	ND	2.0	1		
c-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Alc	ohol (TBA)	,	ND	20	1		
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl Et	her (DIPE)		ND	1.0	1		
1.2-Dichloropropane	ND	1.0	1		Ethvl-t-Butvl E	ther (ETBE)		ND	1.0	1		
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	1.0	1		
2.2-Dichloropropane	ND	5.0	1		Ethanol	, (,	ND	500	1		
1,1-Dichloropropene	ND	2.0	1							•		
Surrogates	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	(Qual	
<u>canogatos.</u>	<u> (/0)</u>	Limits	-					<u> </u>	Limits	-		
1.4-Bromofluorobenzene	95	80-120			Dibromofluoro	methane		101	79-133			
1 2-Dichloroethane-d4	104	71-155			Toluene-d8			97	80-120			
		00							50 120			

Return to Contents

DF - Dilution Factor RL - Reporting Limit , ,

Qual - Qualifiers

MM

F 7 A

Freshwater	Environmental S	Services			Date Re	eceived		04/11/13			
78 Sunny B	Brae Center				Work O	rder No	:	13-0	4-0823		
Arcata, CA	95521-6742				Prepara	tion:	EPA	3050B / EPA 7471A Total			
,					Method			FPA 60	20 / FPA	7471A	
					Units [.]	-				ma/ka	
Project: Tir	o Eiro Proporty				ernte.				Dog	nig/kg	
FIUJECI. III	e i lie Flopeity								Pag	e 1 01 4	
Client Sample Nu	umber		Lab Sam Numbe	nple er	Date /Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Tire-Fire-1-0.0	0'-0.1'		13-04-08	823-1-D	04/09/13 11:00	Solid	ICP/MS 03	04/12/13	04/15/13 18:46	130412L01	
Comment(s):	-Mercury analysis wa	as performed on	04/12/13 14:	19 with batc	h 130412L03.						
Parameter	Result	RL	DF	Qual	Parameter		<u>Result</u>	<u>RL</u>	DF	Qual	
Antimony	ND	2.00	1		Mercury		ND	0.083	5 1		
Arsenic	1.01	1.00	1		Molybdenun	n	ND	1.00	1		
Barium	31.4	1.00	1		Nickel		32.4	1.00	1		
Beryllium	ND	1.00	1		Selenium		ND	1.00	1		
Cadmium	ND	1.00	1		Silver		ND	1.00	1		
Chromium	27.1	2.00	1		Thallium		ND	1.00	1		
Cobalt	19.4	1.00	1		Vanadium		24.5	2.00	1		
Copper	82.1	1.00	1		Zinc		1440	5.00	1		
Lead	30.0	1.00	1		Manganese		349	2.50	1		
Tire-Fire-1-0.5'-0.6'		13-04-08	323-2-B	04/09/13 11:20	Solid	ICP/MS 03	04/12/13	04/15/13 18:49	130412L01		
Comment(s):	-Mercury analysis wa	as performed on	04/12/13 14:	30 with batc	h 130412L03.						
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	- Qual	
Antimony	ND	2.00	1		Mercury		ND	0.083	5 1		
Arsenic	ND	1.00	1		Molvbdenun	n	ND	1.00	1		
Barium	9.63	1.00	1		Nickel		27.7	1.00	1		
Bervllium	ND	1.00	1		Selenium		ND	1.00	1		
Cadmium	ND	1.00	1		Silver		ND	1.00	1		
Chromium	31.8	2.00	1		Thallium		ND	1.00	1		
Cobalt	12.4	1.00	1		Vanadium		27.1	2.00	1		
Copper	146	1.00	1		Zinc		72.9	5.00	1		
Lead	ND	1.00	1		Manganese		604	2.50	1		
Tire-Fire-2-0.0	D'-0.1'		13-04-08	823-3-В	04/09/13 12:10	Solid	ICP/MS 03	04/12/13	04/15/13 18:52	130412L01	
Comment(s):	-Mercury analysis wa	as performed on	04/12/13 14:	33 with batc	h 130412L03.						
Parameter er	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter		<u>Result</u>	<u>RL</u>	<u>D</u> F	Qual	
	ND	0.00	1		Mercury		ND	0.083	5 1		
Antimony	ND	2.00			moreary						
Antimony Arsenic	1.04	2.00	1		Molybdenun	n	ND	1.00	1		
Antimony Arsenic Barium	ND 1.04 58.4	2.00 1.00 1.00	1 1		Molybdenun Nickel	n	ND 30.3	1.00 1.00	1 1		
Antimony Arsenic Barium Beryllium	1.04 58.4 ND	2.00 1.00 1.00 1.00	1 1 1		Molybdenun Nickel Selenium	n	ND 30.3 ND	1.00 1.00 1.00	1 1 1		
Antimony Arsenic Barium Beryllium Cadmium	ND 1.04 58.4 ND ND	2.00 1.00 1.00 1.00 1.00	1 1 1 1		Molybdenun Nickel Selenium Silver	n	ND 30.3 ND ND	1.00 1.00 1.00 1.00	1 1 1 1		
Antimony Arsenic Barium Beryllium Cadmium Chromium	ND 1.04 58.4 ND ND 24.5	2.00 1.00 1.00 1.00 2.00	1 1 1 1 1		Molybdenun Nickel Selenium Silver Thallium	n	ND 30.3 ND ND ND	1.00 1.00 1.00 1.00 1.00	1 1 1 1		
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	ND 1.04 58.4 ND 24.5 10.5	2.00 1.00 1.00 1.00 2.00 1.00	1 1 1 1 1 1		Molybdenun Nickel Selenium Silver Thallium Vanadium	n	ND 30.3 ND ND ND 24.7	1.00 1.00 1.00 1.00 1.00 2.00	1 1 1 1 1		
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	1.04 58.4 ND ND 24.5 10.5 102	2.00 1.00 1.00 1.00 2.00 1.00 1.00	1 1 1 1 1 1 1		Molybdenun Nickel Selenium Silver Thallium Vanadium Zinc	n	ND 30.3 ND ND 24.7 429	1.00 1.00 1.00 1.00 2.00 5.00	1 1 1 1 1 1		

MM

F 78 A

Freshwater	Environmental	Services			Date R	eceived:			04	4/11/13	
78 Sunny Bi	rae Center				Work C	Order No	:	13-04-0823			
Arcata, CA 9	95521-6742				Prepara	ation:	EPA	3050B / E	PA 7471	A Total	
					Method	ŀ		EPA 6020 / EPA 7471A			
					L Inits			E17(00)		ma/ka	
Draigate Tir	- Eiro Bronorty				Onito.				Dee	- 0 of 4	
Project. The	e rile riopeity								Pag	e 2 01 4	
Client Sample Nu	mber		Lab San Numb	nple er	Date /Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Tire-Fire-2-0.5	'-0.6'		13-04-08	323-4-B	04/09/13 12:20	Solid	ICP/MS 03	04/12/13	04/15/13 18:55	130412L01	
Comment(s):	-Mercury analysis wa	as performed on	04/12/13 14:	35 with batc	h 130412L03.						
Parameter	Result	<u>RL</u>	DF	Qual	Parameter		<u>Result</u>	RL	DF	Qual	
Antimony	ND	2.00	1		Mercury		ND	0.083	5 1		
Arsenic	ND	1.00	1		Molybdenur	m	ND	1.00	1		
Barium	11.8	1.00	1		Nickel		28.3	1.00	1		
Beryllium	ND	1.00	1		Selenium		ND	1.00	1		
Cadmium	ND	1.00	1		Silver		ND	1.00	1		
Chromium	28.1	2.00	1		Thallium		ND	1.00	1		
Cobalt	13.8	1.00	1		Vanadium		32.5	2.00	1		
Copper	181	1.00	1		Zinc		48.4	5.00	1		
Lead	1.03	1.00	1		Manganese	9	402	2.50	1		
Tire-Fire-3-0.0'-0.1'		13-04-08	323-5-B	04/09/13 11:35	Solid	ICP/MS 03	04/12/13	04/15/13 18:58	130412L01		
Comment(s):	-Mercury analysis wa	as performed on	04/12/13 14:	37 with batc	h 130412L03.						
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	- Qual	
Antimony	4.43	2.00	1		Mercury		ND	0.083	5 1		
Arsenic	10.8	1.00	1		Molvbdenur	m	ND	1.00	1		
Barium	109	1.00	1		Nickel		86.8	1.00	1		
Beryllium	ND	1.00	1		Selenium		ND	1.00	1		
Cadmium	1.91	1.00	1		Silver		ND	1.00	1		
Chromium	44.0	2.00	1		Thallium		ND	1.00	1		
Cobalt	15.9	1.00	1		Vanadium		26.1	2.00	1		
Copper	988	1.00	1		Zinc		1270	5.00	1		
Lead	230	1.00	1		Manganese	e	341	2.50	1		
Tire-Fire-3-0.5	'-0.6'		13-04-08	323-6-B	04/09/13 11:45	Solid	ICP/MS 03	04/12/13	04/15/13 19:01	130412L01	
Comment(s):	-Mercury analysis wa	as performed on	04/12/13 14:	39 with batc	h 130412L03.						
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Parameter		Result	<u>RL</u>	DF	Qual	
Antimony	ND	2.00	1		Mercury		ND	0.083	5 1		
Arsenic	2.20	1.00	1		Molybdenur	m	ND	1.00	1		
Barium	29.1	1.00	1		Nickel		268	1.00	1		
Beryllium	ND	1.00	1		Selenium		ND	1.00	1		
Cadmium	ND	1.00	1		Silver		ND	1.00	1		
Chromium	51.1	2.00	1		Thallium		ND	1.00	1		
Cobalt	22.0	1.00	1		Vanadium		33.1	2.00	1		
Copper	70.3	1.00	1		Zinc		84.9	5.00	1		
Lead	14.0	1.00	1		Manganese	9	391	2.50	1		

MM

DF - Dilution Factor , RL - Reporting Limit ,

Qual - Qualifiers

Return to Contents

7440 Lincoln Way, Garden Grove, CA 92841-1427 $\,\cdot\,\,$ TEL:(714) 895-5494 $\,\cdot\,\,$ FAX: (714) 894-7501

Freshwater 78 Sunny B		Date Received: 04/11/13 Work Order No: 13-04-0823								
Arcata, CA	95521-6742				Preparat	tion:	EPA	3050B / E	PA 7471	A Total
					Method:			EPA 60	20 / EPA	7471A
					Units:					ma/ka
Project: Tire	e Fire Property				Crintor				Page	e 3 of 4
Client Sample Nu	Imper		Lab San Numb	nple er	Date /Time Collected	Matrix	Instrument	Date Prepared	Date/Time	QC Batch ID
Tire-Fire-4-0.0	'-0.1'		13-04-08	323-7-B	04/09/13 12:00	Solid	ICP/MS 03	04/12/13	04/15/13 19:04	130412L01
Comment(s):	-Mercury analysis wa	s performed on	04/12/13 14:	41 with batc	h 130412L03.					
Parameter A Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter		Result	<u>RL</u>	DF	Qual
Antimony	ND	2.00	1		Mercury		ND	0.083	51	
Arsenic	26.8	1.00	1		Molybdenum	l.	1.21	1.00	1	
Barium	329	1.00	1		Nickel		64.8	1.00	1	
Beryllium	ND	1.00	1		Selenium		ND	1.00	1	
Cadmium	2.58	1.00	1		Silver		ND	1.00	1	
Chromium	52.6	2.00	1		Thallium		ND	1.00	1	
Cobalt	13.2	1.00	1		Vanadium		28.6	2.00	1	
Copper	2430	1.00	1		Zinc		2830	5.00	1	
Lead	74.4	1.00	1		Manganese		447	2.50	1	
Tire-Fire-4-0.5'-0.6'		13-04-08	323-8-B	04/09/13 12:05	Solid	ICP/MS 03	04/12/13	04/15/13 19:13	130412L01	
Comment(s):	-Mercury analysis wa	s performed on	04/12/13 14:	44 with batc	h 130412L03.					
Parameter A Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter Parameter		<u>Result</u>	<u>RL</u>	DF	Qual
Antimony	ND	2.00	1		Mercury		ND	0.083	5 1	
Arsenic	2.54	1.00	1		Molybdenum	l	ND	1.00	1	
Barium	37.5	1.00	1		Nickel		95.9	1.00	1	
Beryllium	ND	1.00	1		Selenium		ND	1.00	1	
Cadmium	ND	1.00	1		Silver		ND	1.00	1	
Chromium	36.3	2.00	1		Thallium		ND	1.00	1	
Cobalt	16.5	1.00	1		Vanadium		40.8	2.00	1	
Copper	144	1.00	1		Zinc		185	5.00	1	
Lead	7.64	1.00	1		Manganese		412	2.50	1	
Tire-Fire-5-0.0	'-0.1'		13-04-08	323-9-B	04/09/13 11:30	Solid	ICP/MS 03	04/12/13	04/15/13 19:16	130412L01
Comment(s):	-Mercury analysis wa	s performed on	04/12/13 14:	46 with batc	h 130412L03.					
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Parameter		<u>Result</u>	<u>RL</u>	DF	Qual
Antimony	ND	2.00	1		Mercury		ND	0.083	5 1	
Arsenic	ND	1.00	1		Molybdenum	l	ND	1.00	1	
Barium	28.2	1.00	1		Nickel		29.1	1.00	1	
Beryllium	ND	1.00	1		Selenium		ND	1.00	1	
Cadmium	ND	1.00	1		Silver		ND	1.00	1	
Chromium	24.6	2.00	1		Thallium		ND	1.00	1	
Cobalt	23.7	1.00	1		Vanadium		20.4	2.00	1	
Copper	97.3	1.00	1		Zinc		1950	5.00	1	
Lead	23.3	1.00	1		Manganese		311	2.50	1	

RL - Reporting Limit ,

MM

DF - Dilution Factor , Qual - Qualifiers Return to Contents

Freshwater Environmental Services					Date Received: 04/11/1					4/11/13	
78 Sunny Br	ae Center				Work O	rder No:		13-04-0823			
Arcata, CA 9	95521-6742				Prepara	tion:	FPA	3050B / F	PA 7471	A Total	
,					Method:		_ .,,	FPΔ 60			
					Linite:				207 11 7	ma/ka	
					Units.				-	nig/kg	
Project: The	e Fire Property								Page	e 4 of 4	
Client Sample Nu	mber		Lab San Numb	nple er	Date /Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Tire-Fire-Back	ground-Metals-0.0'-0	0.1'	13-04-08	323-10-B	04/09/13 12:35	Solid	ICP/MS 03	04/12/13	04/15/13 19:19	130412L01	
Comment(s):	-Mercury analysis wa	as performed on 0	4/12/13 14:	52 with bate	ch 130412L03.						
Parameter A Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter		Result	<u>RL</u>	DF	<u>Qual</u>	
Antimony	ND	2.00	1		Mercury		ND	0.083	35 1		
Arsenic	4.33	1.00	1		Molybdenum	า	ND	1.00	1		
Barium	122	1.00	1		Nickel		52.8	1.00	1		
Beryllium	ND	1.00	1		Selenium		ND	1.00	1		
Cadmium	ND	1.00	1		Silver		ND	1.00	1		
Chromium	43.5	2.00	1		Thallium		ND	1.00	1		
Cobalt	12.9	1.00	1		Vanadium		26.6	2.00	1		
Copper	30.5	1.00	1		Zinc		60.6	5.00	1		
Lead	11.0	1.00	1		Manganese		538	2.50	1		
Method Blank			099-15-6	621-200	N/A	Solid	ICP/MS 03	04/12/13	04/12/13 20:45	130412L01	
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter		<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	
Antimony	ND	2.00	1		Molybdenum	า	ND	1.00	1		
Arsenic	ND	1.00	1		Nickel		ND	1.00	1		
Barium	ND	1.00	1		Selenium		ND	1.00	1		
Beryllium	ND	1.00	1		Silver		ND	1.00	1		
Cadmium	ND	1.00	1		Thallium		ND	1.00	1		
Chromium	ND	2.00	1		Vanadium		ND	2.00	1		
Cobalt	ND	1.00	1		Zinc		ND	5.00	1		
Copper	ND	1.00	1		Manganese		ND	2.50	1		
Lead	ND	1.00	1								
Method Blank			099-04-0	007-9,225	N/A	Solid	Mercury	04/12/13	04/12/13 12:41	130412L03	
Comment(s):	-Preparation/analysis	for Mercury was	performed l	by EPA 747	1A.						
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual							
Mercury	ND	0.0835	1								

n M

Mercury

Freshwater Environmental Services
78 Sunny Brae Center
Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3050B
Method:	EPA 6020

Quality Control Sample ID			Matrix	Instrument		Date Prepared		Date Analyzed	MS/MSD Batch Number		
Tire-Fire-1-0.0'-0.1'			Solid	IC	ICP/MS 03		04/12/13		130	130412S01	
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>	
Antimony	ND	25.00	10.84	43	11.43	46	1-97	5	0-39		
Arsenic	1.013	25.00	25.61	98	25.65	99	72-132	0	0-13		
Barium	31.43	25.00	53.44	88	51.75	81	50-152	3	0-41		
Beryllium	ND	25.00	27.12	108	27.42	110	61-121	1	0-13		
Cadmium	ND	25.00	25.61	102	25.94	104	85-121	1	0-12		
Chromium	27.10	25.00	49.65	90	49.28	89	20-182	1	0-15		
Cobalt	19.40	25.00	41.47	88	42.58	93	40-166	3	0-14		
Copper	82.09	25.00	101.6	78	116.8	139	25-157	14	0-22		
Lead	29.96	25.00	54.54	98	50.38	82	62-134	8	0-23		
Molybdenum	ND	25.00	23.77	95	24.24	97	69-123	2	0-13		
Nickel	32.43	25.00	57.45	100	57.56	100	46-154	0	0-15		
Selenium	ND	25.00	25.03	100	25.27	101	54-132	1	0-14		
Silver	ND	12.50	35.62	285	30.84	247	78-126	14	0-15	3	
Thallium	ND	25.00	24.67	99	25.36	101	79-115	3	0-11		
Vanadium	24.45	25.00	50.54	104	48.10	95	28-178	5	0-28		
Zinc	1441	25.00	1131	4X	1819	4X	23-173	4X	0-18	Q	
Manganese	348.7	25.00	323.0	4X	329.4	4X	80-120	4X	0-20	Q	

RPD - Relative Percent Difference, CL - Control Limit

hM

Quality Control - PDS / PDSD

Freshwater Environmental Services	
78 Sunny Brae Center	
Arcata, CA 95521-6742	

04/11/13
13-04-0823
EPA 3050B
EPA 6020

Project Tire Fire Property

Quality Control Sample ID	Matrix	Matrix Instrument		Date Prepared	Date Analyzed	PDS/PDSD Batch Number
Tire-Fire-1-0.0'-0.1'	Solio	d ICP.	/MS 03	04/12/13	04/12/13	130412S01
Parameter	SAMPLE_CONC	SPIKE_ADDED	PDS_CONC	<u>PDS %REC</u>	<u>%REC CL</u>	Qualifiers
Antimony	ND	25.00	25.65	103	75-125	
Arsenic	1.013	25.00	25.59	98	75-125	
Barium	31.43	25.00	55.44	96	75-125	
Beryllium	ND	25.00	26.82	107	75-125	
Cadmium	ND	25.00	25.45	102	75-125	
Chromium	27.10	25.00	48.94	87	75-125	
Cobalt	19.40	25.00	42.24	91	75-125	
Copper	82.09	25.00	103.5	86	75-125	
Lead	29.96	25.00	54.03	96	75-125	
Molybdenum	ND	25.00	23.62	94	75-125	
Nickel	32.43	25.00	55.25	91	75-125	
Selenium	ND	25.00	25.33	101	75-125	
Silver	ND	12.50	22.05	176	75-125	5
Thallium	ND	25.00	24.59	98	75-125	
Vanadium	24.45	25.00	48.34	96	75-125	
Zinc	1441	25.00	1439	4X	75-125	Q
Manganese	348.7	25.00	366.7	4X	75-125	Q

RPD - Relative Percent Difference, CL - Control Limit

h M

. 65	IN ACCORDA	
JAN .	1 19	~
5 n	Pac	2
A A		Ŧ

Freshwater Environmental Services	Date Received:	04/11/13
78 Sunny Brae Center	Work Order No:	13-04-0823
Arcata, CA 95521-6742	Preparation:	EPA 3550B
	Method:	EPA 8015B

Quality Control Sample ID			Matrix	Ir	Instrument		Date Prepared		MS/MSD Batch Number	
Tire-Fire-1-0.0'-0.1'			Solid	G	C 45	04/	12/13	04/18/13	1304	412S03A
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Diesel Range Organics	24.95	400.0	602.3	144	595.8	143	64-130	1	0-15	3

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hM

NACCORD
ST.
snob A
H COC

Freshwater Environmental Services	Date Received:	04/11/13
78 Sunny Brae Center	Work Order No:	13-04-0823
Arcata, CA 95521-6742	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Quality Control Sample ID		Matrix		Instrument		Date Prepared		Date Analyzed	MS/MSD Batch Number	
Tire-Fire-1-0.0'-0.1'			Solid	GC 45		04/ [,]	04/12/13		130412S04A	
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	MS CONC	<u>MS</u> <u>%REC</u>	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Motor Oil	86.41	400.0	491.9	101	581.9	124	64-130	17	0-15	4

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hM

60	IN ACCORD
40 ¹¹	and the second
ACCA	eac

Freshwater Environmental Services	Date Received:	04/11/13
78 Sunny Brae Center	Work Order No:	13-04-0823
Arcata, CA 95521-6742	Preparation:	EPA 5030C
	Method:	EPA 8015B

Quality Control Sample ID		Matrix Ir		Istrument Pre		Date epared	Date Analyzed	MS/MSD Batch Number		
Tire-Fire-1-0.0'-0.1'			Solid	GC 22 04/12/13		12/13	04/12/13	130412S01		
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	MS CONC	<u>MS</u> <u>%REC</u>	<u>MSD</u> CONC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Gasoline Range Organics	ND	10.00	3.757	38	3.858	39	66-108	3	0-18	3

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

MM

ED IN ACCORDA

ike Duplicate	nelac

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742 Date Received: Work Order No: Preparation: Method: 04/11/13 13-04-0823 EPA 7471A Total EPA 7471A

Project Tire Fire Property

Quality Control Sample ID			Matrix Instrument			Date Prepared		Date Analyzed	MS/MSD Batch Number	
Tire-Fire-1-0.0'-0.1'	Solid Mercury 04/1		12/13	04/12/13	130412S03					
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Mercury	ND	0.8350	0.7386	88	0.7368	88	71-137	0	0-14	

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

MM

Freshwater Environmental Services
78 Sunny Brae Center
Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 82700

Quality Control Sample ID		Matrix	Instrument		Date Prepared		Date Analyzed	MS/MSD Batch Number		
Tire-Fire-1-0.0'-0.1'			Solid	G	GC/MS CCC	04/ ⁻	12/13	04/15/13	130412S07	
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Acenaphthene	ND	10.00	8.816	88	8.386	84	49-133	5	0-18	
Acenaphthylene	ND	10.00	8.905	89	8.525	85	50-150	4	0-20	
Butyl Benzyl Phthalate	ND	10.00	9.259	93	8.832	88	50-150	5	0-20	
4-Chloro-3-Methylphenol	ND	10.00	9.291	93	8.752	88	50-128	6	0-17	
2-Chlorophenol	ND	10.00	8.937	89	9.373	94	57-111	5	0-17	
1,4-Dichlorobenzene	ND	10.00	7.485	75	8.721	87	49-127	15	0-20	
Dimethyl Phthalate	ND	10.00	9.613	96	9.114	91	50-150	5	0-20	
2,4-Dinitrotoluene	ND	10.00	9.625	96	8.724	87	50-128	10	0-18	
Fluorene	ND	10.00	9.389	94	8.913	89	50-150	5	0-20	
N-Nitroso-di-n-propylamine	ND	10.00	9.287	93	9.567	96	54-144	3	0-17	
Naphthalene	ND	10.00	7.824	78	8.176	82	50-150	4	0-20	
4-Nitrophenol	ND	10.00	8.769	88	7.138	71	30-144	21	0-21	
Pentachlorophenol	ND	10.00	7.545	75	5.854	59	29-113	25	0-22	4
Phenol	ND	10.00	9.096	91	9.382	94	57-123	3	0-16	
Pyrene	ND	10.00	8.333	83	7.697	77	47-149	8	0-20	
1,2,4-Trichlorobenzene	ND	10.00	7.548	75	8.037	80	42-132	6	0-20	

hu

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 · FAX: (714) 894-7501

Return to Contents

Freshwater Environmental Services
78 Sunny Brae Center
Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B

Project Tire Fire Property

Quality Control Sample ID		Matrix	Ir	Instrument		Date Prepared		MS/MSD Batch Number		
Tire-Fire-1-0.0'-0.1'			Solid GC/MS W		04/09/13		04/17/13	130417S01		
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	MSD <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	ND	50.00	43.87	88	36.35	73	31-145	19	0-41	
Carbon Tetrachloride	ND	50.00	54.41	109	43.79	88	49-133	22	0-48	
Chlorobenzene	ND	50.00	46.94	94	33.75	68	54-126	33	0-50	
1,2-Dibromoethane	ND	50.00	46.04	92	38.47	77	57-153	18	0-39	
1,2-Dichlorobenzene	ND	50.00	52.41	105	27.02	54	38-128	64	0-62	4
1,2-Dichloroethane	ND	50.00	48.20	96	41.66	83	80-120	15	0-20	
1,1-Dichloroethene	ND	50.00	43.70	87	35.67	71	55-133	20	0-41	
Ethylbenzene	ND	50.00	50.96	102	34.33	69	32-146	39	0-61	
Toluene	ND	50.00	42.81	86	34.87	70	39-141	20	0-52	
Trichloroethene	ND	50.00	43.18	86	35.84	72	57-129	19	0-47	
Vinyl Chloride	ND	50.00	36.65	73	29.08	58	47-137	23	0-58	
p/m-Xylene	ND	100.0	102.8	103	69.61	70	70-130	39	0-30	4
o-Xylene	ND	50.00	51.22	102	35.04	70	70-130	38	0-30	4
Methyl-t-Butyl Ether (MTBE)	ND	50.00	51.17	102	42.80	86	61-145	18	0-33	
Tert-Butyl Alcohol (TBA)	ND	250.0	204.3	82	196.7	79	44-152	4	0-54	
Diisopropyl Ether (DIPE)	ND	50.00	46.55	93	38.65	77	59-137	19	0-36	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	51.55	103	42.99	86	56-140	18	0-36	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	48.46	97	40.30	81	57-141	18	0-35	
Ethanol	ND	500.0	335.4	67	341.6	68	8-170	2	0-77	

RPD - Relative Percent Difference, CL - Control Limit

hu

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742 Date Received:N/AWork Order No:13-04-0823Preparation:EPA 3050BMethod:EPA 6020

Project: Tire Fire Property

Quality Control Sample ID	Ma	Matrix		Instrument		Date Analyzed		LCS/LCSD Batch Number		1
099-15-621-200	Sol	lid	ICP/MS 03		04/12/13	04/15/13		130412L01		
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS <u>%REC</u>	LCSD CONC	LCSD %REC	%REC CL	ME CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Antimony	25.00	25.27	101	25.57	102	80-120	73-127	1	0-20	
Arsenic	25.00	24.97	100	25.47	102	80-120	73-127	2	0-20	
Barium	25.00	25.57	102	25.75	103	80-120	73-127	1	0-20	
Beryllium	25.00	23.47	94	23.51	94	80-120	73-127	0	0-20	
Cadmium	25.00	25.49	102	25.45	102	80-120	73-127	0	0-20	
Chromium	25.00	24.79	99	25.00	100	80-120	73-127	1	0-20	
Cobalt	25.00	25.34	101	25.35	101	80-120	73-127	0	0-20	
Copper	25.00	26.83	107	26.78	107	80-120	73-127	0	0-20	
Lead	25.00	24.66	99	24.80	99	80-120	73-127	1	0-20	
Molybdenum	25.00	24.52	98	25.13	101	80-120	73-127	2	0-20	
Nickel	25.00	25.69	103	25.59	102	80-120	73-127	0	0-20	
Selenium	25.00	24.30	97	24.48	98	80-120	73-127	1	0-20	
Silver	12.50	11.16	89	11.00	88	80-120	73-127	2	0-20	
Thallium	25.00	24.64	99	24.33	97	80-120	73-127	1	0-20	
Vanadium	25.00	24.89	100	24.76	99	80-120	73-127	1	0-20	
Zinc	25.00	26.21	105	26.96	108	80-120	73-127	3	0-20	
Manganese	25.00	24.88	100	24.71	99	80-120	73-127	1	0-20	

Total number of LCS compounds : 17

Total number of ME compounds : 0

Total number of ME compounds allowed :

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

1

м

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	N/A
Work Order No:	13-04-0823
Preparation:	EPA 3550B
Method:	EPA 8015B

Project: Tire Fire Property

Quality Control Sample ID	Matrix		nstrument	D Pre	ate pared	Date Analyzed		LCS/LCSD Batch Number	
099-15-414-214	Solid	GC 45		04/12/13		04/18/13		130412B03A	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Diesel Range Organics	400.0	370.3	93	399.1	100	75-123	7	0-12	

RPD - Relative Percent Difference, CL - Control Limit

hm

N/A

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received: Work Order No: 13-04-0823 Preparation: EPA 3550B Method: EPA 8015B (M)

Project: Tire Fire Property

Quality Control Sample ID	Matrix		Instrument	D Pre	ate pared	Date Analyzed	1	LCS/LCSD Batch Number	
099-15-420-402	Solid	GC 45		04/12/13		04/18/13		130412B04A	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Motor Oil	400.0	377.7	94	368.7	92	75-123	2	0-12	

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hM

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	N/A
Work Order No:	13-04-0823
Preparation:	EPA 5030C
Method:	EPA 8015B

Project: Tire Fire Property

Quality Control Sample ID	Matrix	I	nstrument	D Pre	ate pared	Date Analyzed	l	LCS/LCSD Batch Number	
099-12-024-704	Solid	GC 22		04/12/13		04/12/13		130412B01	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Gasoline Range Organics	10.00	8.339	83	8.797	88	70-118	5	0-28	

RPD - Relative Percent Difference, CL - Control Limit

hu

Freshwater Environmental Services
78 Sunny Brae Center
Arcata, CA 95521-6742

Date Received:	N/A
Work Order No:	13-04-0823
Preparation:	EPA 7471A Total
Method:	EPA 7471A

Project: Tire Fire Property

Quality Control Sample ID	Matrix	Ir	strument	D Pre	ate pared	Date Analyzed	l	LCS/LCSD Batch Number	
099-04-007-9,225	Solid	Mercury		04/12/13		04/12/13		130412L03	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Mercury	0.8350	0.8115	97	0.8128	97	85-121	0	0-10	

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hm

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742 Date Received:N/AWork Order No:13-04-0823Preparation:EPA 3545Method:EPA 8270C

Project: Tire Fire Property

Quality Control Sample ID		atrix	Instrument		Date Prepared	Date Analyzed		LCS/LCSD Batch Number		1
099-12-549-2,450	Sol	id	GC/MS CCC		04/12/13	04/15/13		130412L07		
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS <u>%REC</u>	LCSD CONC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acenaphthene	10.00	8.747	87	8.672	87	59-125	48-136	1	0-15	
Acenaphthylene	10.00	8.653	87	8.271	83	33-145	14-164	5	0-20	
Butyl Benzyl Phthalate	10.00	9.198	92	9.006	90	0-152	0-177	2	0-20	
4-Chloro-3-Methylphenol	10.00	9.259	93	9.122	91	61-121	51-131	1	0-14	
2-Chlorophenol	10.00	9.536	95	9.456	95	60-114	51-123	1	0-15	
1,4-Dichlorobenzene	10.00	9.292	93	9.149	91	61-121	51-131	2	0-21	
Dimethyl Phthalate	10.00	8.974	90	9.037	90	0-112	0-131	1	0-20	
2,4-Dinitrotoluene	10.00	9.718	97	9.921	99	51-141	36-156	2	0-16	
Fluorene	10.00	9.352	94	9.264	93	59-121	49-131	1	0-20	
N-Nitroso-di-n-propylamine	10.00	8.485	85	8.494	85	64-136	52-148	0	0-15	
Naphthalene	10.00	8.605	86	8.455	85	21-133	2-152	2	0-20	
4-Nitrophenol	10.00	8.159	82	9.136	91	38-152	19-171	11	0-31	
Pentachlorophenol	10.00	4.041	40	4.815	48	38-116	25-129	17	0-20	
Phenol	10.00	9.474	95	9.368	94	59-125	48-136	1	0-15	
Pyrene	10.00	8.568	86	8.421	84	51-141	36-156	2	0-14	
1,2,4-Trichlorobenzene	10.00	8.606	86	8.610	86	58-118	48-128	0	0-18	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Mulum

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742 Date Received:N/AWork Order No:13-04-0823Preparation:EPA 5035Method:EPA 8260B

Project: Tire Fire Property

Quality Control Sample ID	Ма	atrix	Instrument	t	Date Prepared	D Ana	ate lyzed	LCS	/LCSD Batch Number	
095-01-025-23,748	Soli	id	GC/MS W		04/17/13	04/17	04/17/13		130417L01	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS <u>%REC</u>	LCSD CONC	<u>LCSD</u> %REC	<u>%REC CL</u>	<u>ME CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	50.00	47.98	96	49.42	99	80-120	73-127	3	0-20	
Carbon Tetrachloride	50.00	59.24	118	61.11	122	65-137	53-149	3	0-20	
Chlorobenzene	50.00	53.10	106	55.27	111	80-120	73-127	4	0-20	
1,2-Dibromoethane	50.00	50.68	101	53.40	107	80-120	73-127	5	0-20	
1,2-Dichlorobenzene	50.00	53.55	107	54.54	109	80-120	73-127	2	0-20	
1,2-Dichloroethane	50.00	50.53	101	52.61	105	80-120	73-127	4	0-20	
1,1-Dichloroethene	50.00	46.83	94	47.64	95	68-128	58-138	2	0-20	
Ethylbenzene	50.00	51.88	104	53.82	108	80-120	73-127	4	0-20	
Toluene	50.00	49.65	99	51.47	103	80-120	73-127	4	0-20	
Trichloroethene	50.00	50.71	101	52.12	104	80-120	73-127	3	0-20	
Vinyl Chloride	50.00	40.84	82	41.09	82	67-127	57-137	1	0-20	
p/m-Xylene	100.0	105.5	105	110.1	110	75-125	67-133	4	0-25	
o-Xylene	50.00	54.45	109	55.83	112	75-125	67-133	3	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	47.74	95	49.85	100	70-124	61-133	4	0-20	
Tert-Butyl Alcohol (TBA)	250.0	260.3	104	263.7	105	73-121	65-129	1	0-20	
Diisopropyl Ether (DIPE)	50.00	47.11	94	49.51	99	69-129	59-139	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	51.06	102	53.46	107	70-124	61-133	5	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	47.89	96	50.25	101	74-122	66-130	5	0-20	
Ethanol	500.0	437.4	87	435.1	87	51-135	37-149	1	0-27	

Total number of LCS compounds : 19

Total number of ME compounds : 0

Total number of ME compounds allowed :

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

1

MM

Glossary of Terms and Qualifiers

Work Order Number: 13-04-0823

Qualifier	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

al	science	7440 LINCO	LN WAY					1		(1.45)					**********			CH	AIN	OF	CU	STO	DDY	RE	COF	۶D
E.	nvironmental	GARDEN GI	ROVE, CA 92	841-1427								m n (n		D	ATE:	N.342.F27.471.441.441.44		1	0	4/10/1	3			and the second
Ā	aboratories, inc.	TEL: (714) 8	95-5494 . FA	X: (714) 894	-7501		produkteren			10	U		IJġ	4		۲.	AGE:							, 		
LABOR	ATORY CLIENT: Freshwater En	vironmental Se	rvices						CLIEN	NT PRO	JECT N	AME / N	UMBER	:						P.O. I	NO.:					
ADDRE	SS: 78 Sunny Brae Center		,		alış diğen teknik deleşinmik detekti	******			PRO.	JECT CO	ONTACT	rty T:	,							SAM	PLER(S)	: (PRIN	T)			
CITY:	Arooto			STATE:	ZIP:	0552	1		Sta	in Thie	esen									Orr	rin Plo	cheer				
TEL		E-MAIL:					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		passing in the second	adamawanga	endensid status	ana ang katalang	9/12/13/13/14/16/19						*****		-	uter and a second s		1240227400-02402		
	707 839-0091	stan	@freshwatere	nvironmenta	alservices.c	om				-		turnen turne tu			REC	UES	STEL) AN	ALY	SES) p======		****	,	-	ranzania,
		48 HR 🔲 7	72 HR 🗍 :	5 DAYS	IXI 10 DA	YS				C44)	5B)											3 7471				
		NA				LOG	CODE:			-92).	A 801				35)							020 an				
SPECI	AL INSTRUCTIONS:						NA	T		36) or	ii EP,				p (50						18.6]	EPA 6(
Plea	ase Homogenize Samples p	rior to Analysi	S.							0-90 C0-0	otor C	0) or (e Pre				70)	47X)	9 or 2	nese (
Met cob	als Include: antimony, arser alt copper lead manganes	nic, barium, be e mercury m	eryllium, cadı olybdenum	nium, chro nickel, sel	omium, enium.				0	0 or (W pu	(826		\$260)	a Coi	-	81)		or (82	010/7	r 719	mange	0			
silve	er, thallium, vanadium, zinc.	o, inc. ou. , ,			,	ved	σ	ered	r GR	r DR(sela	NTBE	260)	tes (8	/ Terr	8270	s (80	382)	310) c	als (6	196 0	stats +	NSI			
NO LAB	percent moisture container v	was tilled for I	LING	5'-0.6'.	NO.	leser	serve	d Filte	4(g) o	o (p)H	H (Die	X/N	Cs (8	dena	Core) soc	ticide	3s (8(4s (8;	Meta	2] (IV	17 Me	S/N			
USE ONLY	SAMPLE ID	DATE	TIME	MATRIX	OF CONT.	nn	Pre	Тіе Тіе	đ	1d1	1 d L	BTB	Š	ð	ш	SVG	Pes	PCI	PN	122	Ū	CAN	Σ			
	Tire-Fire-1-0.0'-0.1'	4/9/2013	11:00	Soil	11	2	9	NA	x		x	L	x		<u>'Х</u>	х						x	X			
2	Tire-Fire-1-0.5'-0.6'	4/9/2013	11:20	Soil	4	1	3	NA	x		x		x		х	X						x				
3	Tire-Fire-2-0.0'-0.1'	4/9/2013	12:10	Soil	4	1	3	NA	х		x		x		х	х						x				
4	Tire-Fire-2-0.5'-0.6'	4/9/2013	12:20	Soil	4	1	3	NA	х		х		x		х	х						x				
5	Tire-Fire-3-0.0'-0.1'	4/9/2013	11:35	Soil	4	1	3	NA	х		x		x		х	х						х				
6	Tire-Fire-3-0.5'-0.6'	4/9/2013	11:45	Soil	4	1	3	NA	х		x		x		х	х						x				
7	Tire-Fire-4-0.0'-0.1'	4/9/2013	12:00	Soil	4	1	3	NA	х		x		x		x	х						x				
8	Tire-Fire-4-0.5'-0.6'	4/9/2013	12:05	Soil	4	1	3	NA	x		x		x		x	х						x				
a	Tire-Fire-5-0.0'-0.1'	4/9/2013	11:30	Soil	4	84	3	NA	x		x		x		x	х						x				1
10	Tire-Fire-Background-Metals-	4/9/2013	12:35	Soil	1	1	NA	NA	Ι	Ι												x				
Reling	uished by: (Signature)	es 1. 1			Rec	eived b	y: (Sig	nature//	Affiliatio	on)		allan manadalah	-Senterconstation		Austrand chapters	Rolling and a second			Date	:	an an Anna an A	antiti attaini	Time			
Reling	uishéd by: (Signature)	<u>-7 //ol</u>	17 10	700	Rec	eived b	y: (Sig	nature/	Affiliatio	n)				A	4-1		/		Date	1	1		Time	·	<u></u>	b
				***										<u> }/_</u>	Þ	90 K	7		41	<u>'///</u>	D_	12-8-14-17-12-74-14-14-		<u>30</u>	/	P
Reling	uished by: (Signature)			(pé	NEX Rec	eived b	oy: (Sig	nature/.	Affiliatio	on)			1	///	1				Date	:			Time	:		۲ نا
L					l								anna an						L	uppine, is high provide	***	esta anticipation and a second	Lansartanase	ejerbijsenhisterene	stilliozzastatoteppior	D

Page 1 of 1 Page 54 of 56

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

-Million			Page 5	5 of 56
Calscience Environmental	WORK ORDER #:	13-04	-08	23
SAMPLE	RECEIPT FOI	RM c	ooler 🗋	
CLIENT: <u>Freshwater</u> Enr.		DATE:	04/11	/13
TEMPERATURE: Thermometer ID: SC1 (Criteria	a: 0.0 °C – 6.0 °C, not frozer	n except sec	diment/tissue)
Temperature <u>2</u> • <u>2</u> • C - 0.2 • C (CF)	= <u>2</u> . <u>0</u> °C	Blank	□ Sample	
☐ Sample(s) outside temperature criteria (PM/APN	I contacted by:).			
□ Sample(s) outside temperature criteria but receiv	ved on ice/chilled on same d	av of samplir	na.	
□ Received at ambient temperature, placed or	n ice for transport by Co	wrier.	'3'	
Ambient Temperature: Air Filter			Initial:	ΛD
	:		······	-AJ
CUSTODY SEALS INTACT:				
Cooler	ntact)	□ N/A	Initial:	4P
□ Sample □ □ No (Not Ir	ntact) 🛛 🖾 Not Present		Initial:	TN
SAMPLE CONDITION:		Yes	No	N/A
Chain-Of-Custody (COC) document(s) received w	/ith samples	. 🗹		
COC document(s) received complete		. 🗹		
□ Collection date/time, matrix, and/or # of containers log	ged in based on sample labels.			
□ No analysis requested. □ Not relinquished. □	No date/time relinquished.	-		
Sampler's name indicated on COC		. 🗹		
Sample container label(s) consistent with COC		. 🗆	Ø	
Sample container(s) intact and good condition		. Ø		
Proper containers and sufficient volume for analys	ses requested	. Ø		
Analyses received within holding time		. 🗹		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen r	received within 24 hours	. □		
Proper preservation noted on COC or sample cor	ntainer	Ø		
\Box Unpreserved vials received for Volatiles analysis				-
Volatile analysis container(s) free of headspace.		. 🗆		
Tedlar bag(s) free of condensation	······	. 🗆		
Solid: ଅ4ozCGJ ⊠8ozCGJ □16ozCGJ □SI	eeve () □EnCores	s® ŹTerra(Cores® 🔟 🗵	Lon PJ
Water: VOA VOAh VOAna ₂ 125AGB	□125AGBh □125AGBp]1AGB na₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB	□250CGB □250CGB s]1PBna □5	500PB
□250PB □250PBn □125PB □125PBznna □	100PJ □100PJ na₂ □	0	□	
Air: □Tedlar [®] □Canister Other: □T Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H	rip Blank Lot#: Z: Ziploc/Resealable Bag E: Env H ₂ SO4 u: Ultra-pure znna: ZnAc ₂ +Nac	_ Labeled/C velope R OH f: Filtered	Shecked by: _ eviewed by: / Scanned by:	TN 1P 1P

.... tu

SOP T100_090 (11/20/12)

Return to Contents

nvironmental aboratories, inc.

Calscience

WORK ORDER #: 13-04-0 2 2 3

SAMPLE ANOMALY FORM

SAMPLI	ES - CO	NTAIN	ERS & L	ABELS:			Comme	ents:					
□ Sam □ Sam □ Hold □ Insut □ Impr □ Impr □ No p □ Sam □ Sam	ple(s) N ple(s) re ing time fficient o oper pre reserva ple labe ple labe Sample	OT REC eceived I e expired quantitie ntainer(s eservativ tive note Is illegik I(s) do n e ID	EIVED bu but NOT I a – list sar s for ana s) used – ve used – ed on CO ble – note not match	ISTED on (ISTED on (ISTED on (ID(s) an Iysis – list to list test list test C or label – test/contain COC – Note	COC COC and test est list test & er type e in comr	& notify lab nents	(-1) <i>F</i>	с. с. с. с. с. с. с. с. с. с. с. с. с. с		Y contrine -s			
	Date ar	nd/or Tir	ne Collec	ted			<u>.</u> in 5	ferd o	<u>F 11.</u>				
	Project	Informa	ation					1×ter 1× 1	racor	est.			
	# OI CO Analysi	ntainer(ie	5)					1 800	2. clea	rglass jar			
□Sam	nle conf	ainer(s)	comproi	nised - Note	e in comr	ments		$\frac{7}{3}\times 2$	- cien	Figures jur			
	Water r	present i	in sample	container	e in com	liento	- <u></u>	<u> </u>	x prom	je jer			
	Broken						(2-3.5	9) R	ceire	ed 5 containers			
□ Sam	ple cont	ainer(s)	not labe	led			instead of 4.						
🗆 Air :	sample (containe	er(s) com	promised –	Note in c	comments		es					
	Flat		.,	•			1× 4 02. clear alass jar						
	Very lo	w in vol	ume				·	1× 202	play	tic jar.			
	Leaking	g (Not tr	ansferre	d - duplicate	e bag sul	omitted)		-	•				
	Leaking	g (transf	ferred int	o Calscienc	e Tedlar	[®] Bag*)		·					
	Leaking	g (transf	ferred int	o Client's T	edlar [®] Ba	ag*)		· · · ·					
🗌 Othe	r:								aqqilaraa				
HEADS	PACE -	- Contai	iners wit	h Bubble >	• 6mm o	or ¼ inch:							
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received		Analysis			
									ana an Tanàna ao				
										· · · · · · · · · · · · · · · · · · ·			
				·····									
Commen	ts:	· · · · · · · · · · · · · · · · · · ·	· ·		· · · · ·			L					
*Transferr	ed at Clie	ent's requ	est.				Ir	nitial / Da	ite:	~ 04/11/13			

Return to Contents

APPENDIX D Laboratory Report and Chain-of-Custody Record - 2

Supplemental Report 1

Additional requested analyses have been added to the original report.

WORK ORDER NUMBER: 13-04-0823

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For Client: Freshwater Environmental Services Client Project Name: Tire Fire Property Attention: Stan Thiesen 78 Sunny Brae Center Arcata, CA 95521-6742

Approved for release on 04/26/2013 by: Don Burley Project Manager

ResultLink)

Email your PM)

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

10 Lincoln Way, Garden Grove, CA 92841-1432 🔹 TEL: (714) 895-5494 🔹 FAX: (714) 894-7501 🔹 www.calscience.com

Work Order Narrative

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 04/11/2013. They were assigned to Work Order 13-04-0823.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontract Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Page 3 of 63

Freshwater Environmental Se 78 Sunny Brae Center Arcata, CA 95521-6742	rvices	Date Received: Work Order No: Preparation: Method:						04/11/13 13-04-0823 EPA 3550B EPA 8015B		
Project: Tire Fire Property							Pa	ige 1 of 3		
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Tire-Fire-1-0.0'-0.1'		13-04-0823-1-D	04/09/13 11:00	Solid	GC 45	04/12/13	04/18/13 17:22	130412B03A		
<u>Parameter</u> Diesel Range Organics	<u>Result</u> 25	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u> SG,HD	<u>Units</u> mg/kg					
<u>Surrogates:</u> n-Octacosane	<u>REC (%)</u> 108	<u>Control Limits</u> 61-145		<u>Qual</u>						
Tire-Fire-1-0.5'-0.6'		13-04-0823-2-B	04/09/13 11:20	Solid	GC 45	04/12/13	04/18/13 17:38	130412B03A		
Parameter Diesel Range Organics	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u> SG	<u>Units</u> mg/kg					
n-Octacosane	<u>104</u>	61-145		Quai						
Tire-Fire-2-0.0'-0.1'		13-04-0823-3-B	04/09/13 12:10	Solid	GC 45	04/12/13	04/18/13 17:57	130412B03A		
Parameter Diesel Range Organics <u>Surrogates:</u> n-Octacosane	<u>Result</u> 64 <u>REC (%)</u> 97	<u>RL</u> 5.0 <u>Control Limits</u> 61-145	<u>DF</u> 1	<u>Qual</u> SG,HD <u>Qual</u>	<u>Units</u> mg/kg					
Tire-Fire-2-0.5'-0.6'		13-04-0823-4-B	04/09/13 12:20	Solid	GC 45	04/12/13	04/18/13 18:14	130412B03A		
Parameter Diesel Range Organics <u>Surrogates:</u>	<u>Result</u> 36 <u>REC (%)</u>	<u>RL</u> 5.0 <u>Control Limits</u>	<u>DF</u> 1	<u>Qual</u> SG,HD <u>Qual</u>	<u>Units</u> mg/kg					
n-Octacosane	99	61-145								

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

Mulhan

Page 4 of 63

Freshwater Environmental Se	shwater Environmental Services				Date Received: 04/11/13						
78 Sunny Brae Center			Work Ord	der No:			13	-04-0823			
Arcata, CA 95521-6742			Preparati	on:			EF	PA 3550B			
			Method:				EF	PA 8015B			
Project: Tire Fire Property							Pa	ige 2 of 3			
		Lab Sample	Date/Time			Date	Date/Time	OC Botob ID			
Client Sample Number		Number	Collected	Matrix	Instrument	Prepared	Analyzed	QC Balch ID			
Tire-Fire-3-0.0'-0.1'		13-04-0823-5-B	04/09/13 11:35	Solid	GC 45	04/12/13	18:31	130412B03A			
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>						
Diesel Range Organics	6300	120	25	SG,HD	mg/kg						
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
n-Octacosane	125	61-145									
Tire-Fire-3-0.5'-0.6'		13-04-0823-6-B	04/09/13 11:45	Solid	GC 45	04/12/13	04/18/13 18:49	130412B03A			
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>						
Diesel Range Organics	1000	100	20	SG,HD	mg/kg						
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
n-Octacosane	111	61-145									
Tire-Fire-4-0.0'-0.1'		13-04-0823-7-B	04/09/13 12:00	Solid	GC 45	04/12/13	04/18/13 19:06	130412B03A			
Parameter	Result	RI	DE	Qual	Unite						
Diesel Range Organics	31	10	2	SG,HD	mg/kg						
Surrogates.	REC (%)	Control Limits		Qual							
n-Octacosane	105	61-145		<u></u>							
Tire-Fire-4-0.5'-0.6'		13-04-0823-8-B	04/09/13	Solid	GC 45	04/12/13	04/18/13	130412B03A			
		10 04 0020 0 0	12:05			• •	19:25				
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>						
Diesel Range Organics	220	50	10	SG,HD	mg/kg						
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
n-Octacosane	96	61-145									

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

Mulhan

Page 5 of 63

Page 3 of 3

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

04/11/13
13-04-0823
EPA 3550B
EPA 8015B

Project: Tire Fire Property

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-5-0.0'-0.1'		13-04-0823-9-B	04/09/13 11:30	Solid	GC 45	04/12/13	04/18/13 19:42	130412B03A
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Diesel Range Organics	23	5.0	1	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	100	61-145						
Method Blank		099-15-414-214	N/A	Solid	GC 45	04/12/13	04/18/13 14:41	130412B03A
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	100	61-145						

Senetacian Stranger

Page 6 of 63

Freshwater Environmental Se 78 Sunny Brae Center Arcata, CA 95521-6742	rvices		Date Rec Work Orc Preparati Method:	eived: der No: on:			13 EF EPA 8	04/11/13 3-04-0823 PA 3550B 3015B (M)
Project: Tire Fire Property							Pa	age 1 of 3
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-1-0.0'-0.1'		13-04-0823-1-D	04/09/13 11:00	Solid	GC 45	04/12/13	04/18/13 17:22	130412B04A
Parameter TPH as Motor Oil	<u>Result</u> 86	<u>RL</u> 25	<u>DF</u> 1	<u>Qual</u> SG,HD	<u>Units</u> mg/kg			
<u>Surrogates:</u> n-Octacosane	<u>REC (%)</u> 108	Control Limits 61-145		<u>Qual</u>				

Tire-Fire-1-0.5'-0.6'		13-04-0823-2-В	04/09/13 11:20	Solid	GC 45	04/12/13	04/18/13 17:38	130412B04A
<u>Parameter</u> TPH as Motor Oil	<u>Result</u> ND	<u>RL</u> 25	<u>DF</u> 1	<u>Qual</u> SG	<u>Units</u> mg/kg			
Surrogates: n-Octacosane	<u>REC (%)</u> 104	<u>Control Limits</u> 61-145		Qual				
Tire-Fire-2-0.0'-0.1'		13-04-0823-3-B	04/09/13 12:10	Solid	GC 45	04/12/13	04/18/13 17:57	130412B04A

<u>Parameter</u> TPH as Motor Oil	<u>Result</u> 99	<u>RL</u> 25	<u>DF</u> 1	<u>Qual</u> SG,HD	<u>Units</u> mg/kg			
<u>Surrogates:</u> n-Octacosane	<u>REC (%)</u> 97	<u>Control Limits</u> 61-145		<u>Qual</u>				
Tire-Fire-2-0.5'-0.6'		13-04-0823-4-B	04/09/13 12:20	Solid	GC 45	04/12/13	04/18/13 18·14	130412B04A
							10.14	
Parameter TPH as Motor Oil	<u>Result</u> 170	<u>RL</u> 25	<u>DF</u> 1	<u>Qual</u> SG,HD	<u>Units</u> mg/kg		10.14	
Parameter TPH as Motor Oil Surrogates:	<u>Result</u> 170 <u>REC (%)</u>	<u>RL</u> 25 <u>Control Limits</u>	<u>DF</u> 1	<u>Qual</u> SG,HD <u>Qual</u>	<u>Units</u> mg/kg		10.14	

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

Stread IN ACCORDANCE

Page 7 of 63

Freshwater Environmental Services		Date Received:	04/11/13
78 Sunny Brae Center		Work Order No:	13-04-0823
Arcata, CA 95521-6742		Preparation:	EPA 3550B
		Method:	EPA 8015B (M)
Project: Tire Fire Property			Page 2 of 3
Client Sample Number	Lab Sample	Date/Time Collected Matrix	Date Date/Time Instrument Prepared Analyzed QC Batch ID

		Number	Collected				·	
Tire-Fire-3-0.0'-0.1'		13-04-0823-5-B	04/09/13 11:35	Solid	GC 45	04/12/13	04/18/13 18:31	130412B04A
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	12000	620	25	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	125	61-145						
Tire-Fire-3-0.5'-0.6'		13-04-0823-6-B	04/09/13 11:45	Solid	GC 45	04/12/13	04/18/13 18:49	130412B04A
Parameter	Result	RL	DF	Qual	Units			
TPH as Motor Oil	4400	500	20	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	111	61-145						
Tire-Fire-4-0.0'-0.1'		13-04-0823-7-B	04/09/13 12:00	Solid	GC 45	04/12/13	04/18/13 19:06	130412B04A
Descuring	Decili		55	0	11-20-			
Parameter TDI Los Mater Oil	Result	<u>RL</u>		<u>Qual</u>	<u>Units</u>			
IPH as Motor Oil	180	50	Z	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	105	61-145						
Tire-Fire-4-0.5'-0.6'		13-04-0823-8-B	04/09/13 12:05	Solid	GC 45	04/12/13	04/18/13 19:25	130412B04A
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	930	250	10	SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	96	61-145						

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

Mulana

Stread T

Page 8 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742 Date Received: Work Order No: Preparation: Method:

Page 3 of 3

04/11/13

13-04-0823

EPA 3550B

EPA 8015B (M)

Project: Tire Fire Property

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-5-0.0'-0.1'		13-04-0823-9-B	04/09/13 11:30	Solid	GC 45	04/12/13	04/18/13 19:42	130412B04A
Parameter	Recult	PI	DE	Qual	Unite			
TPH as Motor Oil	<u>84</u>	25	1	<u>Guai</u> SG,HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	100	61-145						
Method Blank		099-15-420-402	N/A	Solid	GC 45	04/12/13	04/18/13 14:41	130412B04A
Parameter	Result	RL	DF	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
n-Octacosane	100	61-145						

hm

Page 9 of 63

Freshwater Environmental S	Date Received: 04/11/13									
78 Sunny Brae Center			Work Order No: 13-04-0823							
Arcata, CA 95521-6742			Preparati	on:			EF	PA 5030C		
			Method:		EPA 8015B					
Project: Tire Fire Property							Pa	age 1 of 3		
· _ · _ · · · ·		Lab Sample	Date/Time			Date	Date/Time			
Client Sample Number		Number	Collected	Matrix	Instrument	Prepared	Analyzed	QC Batch ID		
Tire-Fire-1-0.0'-0.1'		13-04-0823-1-D	04/09/13 11:00	Solid	GC 22	04/12/13	04/12/13 17:20	130412B01		
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	70	42-126								
Tire-Fire-1-0.5'-0.6'		13-04-0823-2-B	04/09/13 11:20	Solid	GC 22	04/12/13	04/12/13 18:59	130412B01		
Parameter	Result	RL	DF	Qual	Units					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	78	42-126								
Tire-Fire-2-0.0'-0.1'		13-04-0823-3-В	04/09/13 12:10	Solid	GC 22	04/12/13	04/12/13 19:32	130412B01		
Parameter	Result	RL	DF	Qual	Units					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	76	42-126								
Tire-Fire-2-0.5'-0.6'		13-04-0823-4-B	04/09/13 12:20	Solid	GC 22	04/12/13	04/12/13 20:05	130412B01		
Deservator	Dec.1		DE	0	11.20					
<u>Parameter</u>	Kesult ND	<u>KL</u> 0.50		Qual	<u>Units</u>					
Gasoline Kange Organics	שא	0.50	I		тід/кд					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	76	42-126								

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

hM

Page 10 of 63

Freshwater Environmental Se		Date Received: 04/11/13								
78 Sunny Brae Center			Work Order No: 13-04-08							
Arcata, CA 95521-6742			Preparation: EPA 503							
			Method:				EF	PA 8015B		
Project: Tire Fire Property							Pa	age 2 of 3		
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Tire-Fire-3-0.0'-0.1'		13-04-0823-5-B	04/09/13 11:35	Solid	GC 22	04/12/13	04/12/13 20:37	130412B01		
Parameter	<u>Result</u>	RL	DF	<u>Qual</u>	<u>Units</u>					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		Qual						
1,4-Bromofluorobenzene	71	42-126								
Tire-Fire-3-0.5'-0.6'		13-04-0823-6-B	04/09/13 11:45	Solid	GC 22	04/12/13	04/12/13 21:10	130412B01		
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	76	42-126								
Tire-Fire-4-0.0'-0.1'		13-04-0823-7-B	04/09/13 12:00	Solid	GC 22	04/12/13	04/12/13 21:43	130412B01		
Parameter	Result	RL	DF	Qual	Units					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		Qual						
1,4-Bromofluorobenzene	72	42-126								
Tire-Fire-4-0.5'-0.6'		13-04-0823-8-B	04/09/13 12:05	Solid	GC 22	04/12/13	04/12/13 22:16	130412B01		
Parameter	Result	RL	DF	Qual	Units					
Gasoline Range Organics	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		Qual						
1,4-Bromofluorobenzene	77	42-126								

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

hM 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 ·

FAX: (714) 894-7501

Page 11 of 63

Page 3 of 3

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5030C
Method:	EPA 8015B

Project: Tire Fire Property

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-5-0.0'-0.1'		13-04-0823-9-B	04/09/13 11:30	Solid	GC 22	04/12/13	04/12/13 22:49	130412B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	73	42-126						
Method Blank		099-12-024-704	N/A	Solid	GC 22	04/12/13	04/12/13 14:08	130412B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	71	42-126						

hM

FAX: (714) 894-7501

Method:

Units:

Freshwater Environmental Services 78 Sunny Brae Center

Arcata, CA 95521-6742

	i i i i i i i i i i i i i i i i i i i
Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545

EPA 8270C mg/kg

Page 1 of 6

Project: Tire Fire Property

Client Sample Number			Lab Ni	Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ïme zed	QC Batch ID
Tire-Fire-1-0.0'-0.1'			13-04-0823-1-E		04/09/13 11:00	Solid	GC/MS CCC	04/23/13	04/24 19:1	/13 4	130423L06
Comment(s): -The sample volume rec	eived was l	ess than r	required re	esulting in	an elevated repo	orting limit					
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter er			Result	<u>RL</u>	DF	<u>Qual</u>
Phenol	0.023	0.022	1.12		N-Nitrosodimet	hylamine		ND	0.022	1.12	
2-Chlorophenol	ND	0.022	1.12		Aniline	,		ND	0.022	1.12	
2-Methylphenol	ND	0.022	1.12		Bis(2-Chloroeth	yl) Ether		ND	0.11	1.12	
3/4-Methylphenol	ND	0.022	1.12		1,3-Dichlorober	izene		ND	0.022	1.12	
2-Nitrophenol	ND	0.022	1.12		1,4-Dichlorober	nzene		ND	0.022	1.12	
2,4-Dimethylphenol	ND	0.022	1.12		Benzyl Alcohol			ND	0.022	1.12	
2,4-Dichlorophenol	ND	0.022	1.12		1,2-Dichlorober	nzene		ND	0.022	1.12	
4-Chloro-3-Methylphenol	ND	0.022	1.12		Bis(2-Chloroiso	propyl) Et	her	ND	0.022	1.12	
2,4-Dinitrophenol	ND	0.11	1.12		N-Nitroso-di-n-p	oropylamir	ne	ND	0.022	1.12	
4-Nitrophenol	ND	0.022	1.12		Hexachloroetha	ne		ND	0.022	1.12	
4,6-Dinitro-2-Methylphenol	ND	0.11	1.12		Nitrobenzene			ND	0.11	1.12	
2,4,6-Trichlorophenol	ND	0.022	1.12		Isophorone			ND	0.022	1.12	
2,4,5-Trichlorophenol	ND	0.022	1.12		Benzoic Acid			ND	0.11	1.12	
Pentachlorophenol	ND	0.022	1.12		Bis(2-Chloroeth	loxy) Meth	ane	ND	0.022	1.12	
Dimethyl Phthalate	0.055	0.011	1.12		1,2,4-Trichlorob	benzene		ND	0.022	1.12	
Diethyl Phthalate	ND	0.011	1.12		4-Chloroaniline			ND	0.022	1.12	
Di-n-Butyl Phthalate	ND	0.011	1.12		Hexachloro-1,3-	-Butadien	е	ND	0.022	1.12	
Butyl Benzyl Phthalate	0.020	0.011	1.12		2-Methylnaphth	alene		ND	0.022	1.12	
Bis(2-Ethylhexyl) Phthalate	0.14	0.011	1.12		1-Methylnaphth	alene		ND	0.022	1.12	
Di-n-Octyl Phthalate	ND	0.011	1.12		Hexachlorocycle	opentadie	ne	ND	0.022	1.12	
Naphthalene	0.024	0.022	1.12		2-Chloronaphth	alene		ND	0.022	1.12	
Acenaphthylene	ND	0.022	1.12		2-Nitroaniline			ND	0.022	1.12	
Acenaphthene	ND	0.022	1.12		3-Nitroaniline			ND	0.022	1.12	
Fluorene	ND	0.022	1.12		Dibenzofuran			ND	0.022	1.12	
Phenanthrene	ND	0.022	1.12		2,4-Dinitrotolue	ne		ND	0.022	1.12	
Anthracene	ND	0.022	1.12		2,6-Dinitrotolue	ne		ND	0.022	1.12	
Fluoranthene	ND	0.018	1.12		4-Chlorophenyl-	-Phenyl E	ther	ND	0.022	1.12	
Pyrene	ND	0.022	1.12		4-Nitroaniline			ND	0.022	1.12	
Benzo (a) Anthracene	ND	0.022	1.12		Azobenzene			ND	0.022	1.12	
Chrysene	ND	0.022	1.12		N-Nitrosodipher	nylamine		ND	0.022	1.12	
Benzo (k) Fluoranthene	ND	0.022	1.12		4-Bromophenyl-	-Phenyl E	ther	ND	0.022	1.12	
Benzo (b) Fluoranthene	ND	0.022	1.12		Hexachlorobenz	zene		ND	0.022	1.12	
Benzo (a) Pyrene	ND	0.022	1.12		Benzidine			ND	0.11	1.12	
Indeno (1,2,3-c,d) Pyrene	ND	0.022	1.12		Pyridine			0.031	0.022	1.12	
Dibenz (a,h) Anthracene	ND	0.022	1.12		3,3'-Dichlorober	nzidine		ND	0.022	1.12	
Benzo (g,h,i) Perylene	ND	0.022	1.12								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
2-Fluorophenol	49	25-121			Phenol-d6			61	24-113		
Nitrobenzene-d5	51	23-120			2-Eluorobinhen	vl		56	30-115		
2.4.6-Tribromonhenel	69	10-122			n-Ternhonyl d1	,. Λ		141	18-137		27
2,4,0-1101011001100	00	13-122			p-reipnenyl-ar	4		1-71	10-107		∠,1

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 ·

FAX: (714) 894-7501

Page 13 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C
Units:	mg/kg
	Page 2 of 6

Project: Tire Fire Property

Thre-Fire-1-0.5'-0.6' 13-04-0823-2-BF 04/09/13 Solid GC/MS CCC 04/23/13 04/23/13 130423L0 Comment(s): -The sample volume received was less than required resulting in an elevated reporting limit. Earameter Result RL DE Qual Parameter Result RL DE Qual Phenol ND 0.027 1.37 N-Nitrosocimethylamine ND 0.027 1.37 2-Metrylphenol ND 0.027 1.37 Bis(2-Chioroethyl) Ether ND 0.14 1.37 2-Metrylphenol ND 0.027 1.37 Bis(2-Chiorobenzene ND 0.027 1.37 2-A Dinkrophenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-A Dinkrophenol ND 0.027 1.37 Bis(2-Chiorobenzene ND 0.027 1.37 2-A-Dinkrophenol ND 0.027 1.37 Hexachiorobenzene ND 0.027 1.37 2-A-Dinkrophenol ND 0.027 1.37	Client Sample Number			Lal N	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy	Fime rzed	QC Batch ID
Comment(s): The sample volume received was less than required resulting in an elevated reporting limit. Result RL DE Qual Prend ND 0.027 1.37 N-Nitrosodimethylamine ND 0.027 1.37 2-Nitrophenol ND 0.027 1.37 Aniline ND 0.027 1.37 2-Methylphenol ND 0.027 1.37 Bis(2-Chicroethyl) Eher ND 0.027 1.37 2-Mitrophenol ND 0.027 1.37 1.4-Dichicrobenzene ND 0.027 1.37 2-A-Dichicrophenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-A-Dichicrophenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-A-Dichicrophenol ND 0.027 1.37 Haxachicroethane ND 0.027 1.37 2-A-Dichicrophenol ND 0.14 1.37 Haxachicroethane ND 0.027 1.37 2-A-Dichicrophenol ND <	Tire-Fire-1-0.5'-0.6'			13-04-0)823-2-BF	04/09/13 11:20	04/09/13 Solid GC/MS CCC 11:20		04/23/13	04/24/13 15:44		130423L06
Parameter Result RL DE Qual Parameter Result RL DF Qual Phend ND 0.027 1.37 N-Nitrosodimethylamine ND 0.027 1.37 2-Mitrylphend ND 0.027 1.37 Bis(2-Chloroethyl) Ether ND 0.027 1.37 2-Mitrylphend ND 0.027 1.37 1.3-Dichlorobenzene ND 0.027 1.37 2-Mitrylphend ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-Mitrylphend ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-ADichlorophenol ND 0.027 1.37 Hacachloroethane ND 0.027 1.37 2-ADichlorophenol ND 0.141 1.37 Hacachloroethane ND 0.027 1.37 2-ADichlorophenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-ADichlorophenol ND	Comment(s): -The sample volume re	eceived was	less than	required	resulting in	an elevated rep	orting limit	t.				
Phend ND 0.027 1.37 N-Nitrosodimethylamine ND 0.027 1.37 2-Chiorophenol ND 0.027 1.37 Aniline ND 0.027 1.37 2-Methylphenol ND 0.027 1.37 Bis(2-Chioroethyl) Ether ND 0.027 1.37 3/4-Methylphenol ND 0.027 1.37 1.4-Dichlorobenzene ND 0.027 1.37 2.4-Diribitrophenol ND 0.027 1.37 1.2-Dichlorobenzene ND 0.027 1.37 2.4-Diribitrophenol ND 0.027 1.37 Bis(2-Chiorosborpopyl) Ether ND 0.027 1.37 2.4-Diribitrophenol ND 0.027 1.37 Heixachioroethane ND 0.027 1.37 2.4-Diribitrophenol ND 0.027 1.37 Bis(2-Chiorostory) Methane ND 0.027 1.37 2.4-Strichlorophenol ND 0.027 1.37 Bis(2-Chiorostory) Methane ND 0.027 1.37 2.4-Strichlorophenol	Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	Qual
2-Chlorophenol ND 0.027 1.37 Aniline ND 0.027 1.37 2-Methylphenol ND 0.027 1.37 Bis(2-Chloroethyl) Ether ND 0.027 1.37 2-Mitrylphenol ND 0.027 1.37 1.3-Dichlorobenzene ND 0.027 1.37 2-Mitrophenol ND 0.027 1.37 1.4-Dichlorobenzene ND 0.027 1.37 2-ADitrophylphenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-ADitrophenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-ADitrophenol ND 0.027 1.37 Hexachloroethane ND 0.027 1.37 2-ADitrophenol ND 0.027 1.37 Benzoic Acid ND 0.027 1.37 2-AB-Trichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.027 1.37 2-AB-Trichlorophenol ND 0.027 1.37<	Phenol	ND	0.027	1.37		N-Nitrosodime	thvlamine		ND	0.027	1.37	
2-Methylphenol ND 0.027 1.37 Bis(2-Chloroethyl) Ether ND 0.14 1.37 3/4-Methylphenol ND 0.027 1.37 1,3-Dichlorobenzene ND 0.027 1.37 2.4-Dinbertylphenol ND 0.027 1.37 1.4-Dichlorobenzene ND 0.027 1.37 2.4-Dinbertylphenol ND 0.027 1.37 1.2-Dichlorobenzene ND 0.027 1.37 2.4-Dinbertylphenol ND 0.027 1.37 1.2-Dichlorobenzene ND 0.027 1.37 2.4-Dichlorophenol ND 0.027 1.37 Hexachloroethane ND 0.027 1.37 2.4-Dichlorophenol ND 0.14 1.37 Hexachloroethane ND 0.027 1.37 2.4-Grichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.14 1.37 2.4-Grichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.14 1.37 2.4-Grichlorophenol ND	2-Chlorophenol	ND	0.027	1.37		Aniline			ND	0.027	1.37	
3/4-Methylphenol ND 0.027 1.37 1,3-Dichlorobenzene ND 0.027 1.37 2-Nitrophenol ND 0.027 1.37 1,4-Dichlorobenzene ND 0.027 1.37 2-A-Dimethylphenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2-A-Dinethylphenol ND 0.027 1.37 Bis(2-Chloroisopropyl) Ether ND 0.027 1.37 4-Chloro-3-Methylphenol ND 0.027 1.37 N-Nitroso-din-propylatine ND 0.027 1.37 4-Solinto-2-Methylphenol ND 0.027 1.37 Hexachloroethane ND 0.027 1.37 2-4,6-Tritchlorophenol ND 0.027 1.37 Bis(2-Chloroethoxyl Methane ND 0.027 1.37 2,4,5-Tritchlorophenol ND 0.027 1.37 Bis(2-Chloroethoxyl Methane ND 0.027 1.37 2,4,5-Tritchlorophenol ND 0.027 1.37 Bis(2-Ethylnephthalate ND 0.027 1.37	2-Methylphenol	ND	0.027	1.37		Bis(2-Chloroet	hvl) Ether		ND	0.14	1.37	
2-Nitrophenol ND 0.027 1.37 1.4-Dichlorobenzene ND 0.027 1.37 2.4-Dichlorophenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2.4-Dichlorophenol ND 0.027 1.37 1.2-Dichlorobenzene ND 0.027 1.37 2.4-Dichlorophenol ND 0.027 1.37 Bis(2-Chloroisopropyl) Ether ND 0.027 1.37 2.4-Dichlorophenol ND 0.027 1.37 Hexachloroethane ND 0.027 1.37 4.6-Diritro-2-Methylphenol ND 0.14 1.37 Hexachloroethane ND 0.027 1.37 2.4.5-Trichlorophenol ND 0.027 1.37 Berzoic Acid ND 0.027 1.37 Dienthylphthalate 0.077 0.014 1.37 Berzoic Acid ND 0.027 1.37 Dientyl Phthalate ND 0.014 1.37 Hexachlorozylphthalene ND 0.027 1.37 Dientyl Phthalate <	3/4-Methylphenol	ND	0.027	1.37		1.3-Dichlorobe	nzene		ND	0.027	1.37	
2,4-Dimethylphenol ND 0.027 1.37 Benzyl Alcohol ND 0.027 1.37 2,4-Dichlorophenol ND 0.027 1.37 1,2-Dichlorobanzene ND 0.027 1.37 2,4-Dinitrophenol ND 0.027 1.37 Bis(2-Chloroisopropyl) Ether ND 0.027 1.37 2,4-Dinitrophenol ND 0.14 1.37 Nitrobenzene ND 0.027 1.37 4-Nitrophenol ND 0.14 1.37 Nitrobenzene ND 0.027 1.37 2,4-5.Trichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.027 1.37 2,4-5.Trichlorophenol ND 0.027 1.37 Bis(2-Chloroethoxy) Methane ND 0.027 1.37 Dirhyl Phthalate 0.007 0.014 1.37 1.2,4-Trichlorobenzene ND 0.027 1.37 Dirhyl Phthalate ND 0.014 1.37 1.4-4-Trichlorobenzene ND 0.027 1.37 Bis(2-Ethylphthalate	2-Nitrophenol	ND	0.027	1.37		1.4-Dichlorobe	nzene		ND	0.027	1.37	
2.4-Dichlorophenol ND 0.027 1.37 1.2-Dichlorobenzene ND 0.027 1.37 4-Chioro-3-Methylphenol ND 0.027 1.37 Bis(2-Chloroisopropyl) Ether ND 0.027 1.37 4-Chioro-3-Methylphenol ND 0.027 1.37 Hexachloroschane ND 0.027 1.37 4-Nitrosphenol ND 0.027 1.37 Hexachloroschane ND 0.027 1.37 4-Ko-Trichlorophenol ND 0.027 1.37 Isophorone ND 0.027 1.37 2,4-5-Trichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.027 1.37 Pentachlorophenol ND 0.027 1.37 Bis(2-Chloroethoxyl Methane ND 0.027 1.37 Dimethyl Phthalate ND 0.014 1.37 4-Chloroanline ND 0.027 1.37 Din-Butyl Phthalate ND 0.014 1.37 4-Methylnaphthalene ND 0.027 1.37 Din-Octyl Phthalate	2.4-Dimethylphenol	ND	0.027	1.37		Benzvl Alcohol			ND	0.027	1.37	
4-Chloro-3-Methylphenol ND 0.027 1.37 Bis(2-Chloroisopropyl) Ether ND 0.027 1.37 2.4-Dinitrophenol ND 0.14 1.37 N-Nitroso-din-propylamine ND 0.027 1.37 4.4-Dinitro-2-Methylphenol ND 0.027 1.37 Hexachloroethane ND 0.027 1.37 4.6-Dinitro-2-Methylphenol ND 0.14 1.37 Hexachloroethane ND 0.027 1.37 2.4.5-Trichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.027 1.37 Pentachlorophenol ND 0.027 1.37 Bis(2-Chloroethoxy) Methane ND 0.027 1.37 Din-Hyl Phthalate 0.077 0.014 1.37 4-Chloroaniline ND 0.027 1.37 Di-n-Butyl Phthalate ND 0.014 1.37 4-Methylnaphtalene ND 0.027 1.37 Bityl Ebnzyl Phthalate ND 0.014 1.37 4-Methylnaphtalene ND 0.027 1.37	2.4-Dichlorophenol	ND	0.027	1.37		1.2-Dichlorobe	nzene		ND	0.027	1.37	
2,4-Dinitrophenol ND 0.14 1.37 N-Nitroso-di-n-proplamine ND 0.027 1.37 4-Nitrophenol ND 0.027 1.37 Hexachlorethane ND 0.027 1.37 4-Obintro-Zelethylphenol ND 0.027 1.37 Isophorone ND 0.14 1.37 2,4,5-Trichlorophenol ND 0.027 1.37 Benzoic Add ND 0.027 1.37 Pentachlorophenol ND 0.027 1.37 Benzoic Add ND 0.027 1.37 Dimethyl Phthalate 0.077 0.014 1.37 1.2,4-Trichlorobenzene ND 0.027 1.37 Dimethyl Phthalate ND 0.014 1.37 Hexachloro-1,3-Butadiene ND 0.027 1.37 Bityl Benzyl Phthalate ND 0.014 1.37 Hexachloro-Cyclopentadiene ND 0.027 1.37 Bityl Enzyl Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Acenaphthylene <td>4-Chloro-3-Methylphenol</td> <td>ND</td> <td>0.027</td> <td>1.37</td> <td></td> <td>Bis(2-Chlorois</td> <td>opropyl) Et</td> <td>ther</td> <td>ND</td> <td>0.027</td> <td>1.37</td> <td></td>	4-Chloro-3-Methylphenol	ND	0.027	1.37		Bis(2-Chlorois	opropyl) Et	ther	ND	0.027	1.37	
4-Nitrophenol ND 0.027 1.37 Hexachloroethane ND 0.027 1.37 4,6-Dinitro-2-Methylphenol ND 0.14 1.37 Nitrobenzene ND 0.14 1.37 2,4.5-Trichlorophenol ND 0.027 1.37 Bsophorone ND 0.027 1.37 Pentachlorophenol ND 0.027 1.37 Benzoic Acid ND 0.14 1.37 Pentachlorophenol ND 0.027 1.37 Bis(2-Choroethoxy) Methane ND 0.027 1.37 Dimethyl Phthalate ND 0.014 1.37 1.4-Chloroaniline ND 0.027 1.37 Dir-h Butyl Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Bis(2-Ethylhexyl) Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Bis(2-Ethylhexyl) Phthalate ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Di-n-Octyl Phthal	2.4-Dinitrophenol	ND	0.14	1.37		N-Nitroso-di-n-	propylami	ne	ND	0.027	1.37	
4,6-Dinitro-2-Methylphenol ND 0.14 1.37 Nitrobenzene ND 0.14 1.37 2,4,6-Trichlorophenol ND 0.027 1.37 Isophorone ND 0.027 1.37 2,4,5-Trichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.14 1.37 Pentachlorophenol ND 0.027 1.37 Bis(2-Chloroethoxy) Methane ND 0.027 1.37 Dimethyl Phthalate 0.077 0.014 1.37 1.2,4-Trichlorophenzene ND 0.027 1.37 Din-butyl Phthalate ND 0.014 1.37 1.2,4-Trichloroaniline ND 0.027 1.37 Butyl Benzyl Phthalate ND 0.014 1.37 1.4exachloro-1.3-Butadiene ND 0.027 1.37 Bis(2-Ethylhexyl) Phthalate ND 0.014 1.37 1.4exachloro-1.3-Butadiene ND 0.027 1.37 Din-Octyl Phthalate ND 0.027 1.37 2-Chloronaphthalene ND 0.027 1.37 Naphthalene ND 0.027 1.37 2-Chloronaphthalene ND <td>4-Nitrophenol</td> <td>ND</td> <td>0.027</td> <td>1.37</td> <td></td> <td>Hexachloroetha</td> <td>ane</td> <td></td> <td>ND</td> <td>0.027</td> <td>1.37</td> <td></td>	4-Nitrophenol	ND	0.027	1.37		Hexachloroetha	ane		ND	0.027	1.37	
2.4,6-Trichlorophenol ND 0.027 1.37 Isophorone ND 0.027 1.37 2.4,5-Trichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.14 1.37 Pentachlorophenol ND 0.027 1.37 Bis(2-Chloroethoxy) Methane ND 0.027 1.37 Dimethyl Phthalate ND 0.014 1.37 4-Chloroaniline ND 0.027 1.37 Di-n-Butyl Phthalate ND 0.014 1.37 4-Chloroaniline ND 0.027 1.37 Bityl Benzyl Phthalate ND 0.014 1.37 Hexachloro-1,3-Butadiene ND 0.027 1.37 Bityl Benzyl Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Di-n-Octyl Phthalate ND 0.027 1.37 2-Chloronaphthalene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Fluorene <	4.6-Dinitro-2-Methylphenol	ND	0.14	1.37		Nitrobenzene			ND	0.14	1.37	
2,4,5-Trichlorophenol ND 0.027 1.37 Benzoic Acid ND 0.14 1.37 Pentachlorophenol ND 0.027 1.37 Bis(2-Chloroethoxy) Methane ND 0.027 1.37 Dimethyl Phthalate 0.077 0.014 1.37 1,2,4-Trichlorobenzene ND 0.027 1.37 Din-Butyl Phthalate ND 0.014 1.37 4-Chloroenalline ND 0.027 1.37 Din-Butyl Phthalate ND 0.014 1.37 Hexachloro-1,3-Butadiene ND 0.027 1.37 Bis(2-Ethylkexyl) Phthalate ND 0.014 1.37 Hexachloro-2,3-Butadiene ND 0.027 1.37 Bis(2-Ethylkexyl) Phthalate ND 0.014 1.37 Hexachloro-2,0-opentadiene ND 0.027 1.37 Din-Octyl Phthalate ND 0.027 1.37 Procentadiene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 S-Nitroaniline ND 0.027 1.37 <	2.4.6-Trichlorophenol	ND	0.027	1.37		Isophorone			ND	0.027	1.37	
Pentachlorophenol ND 0.027 1.37 Bis(2-Chloroethoxy) Methane ND 0.027 1.37 Dimethyl Phthalate 0.077 0.014 1.37 1.2.4-Trichlorobenzene ND 0.027 1.37 Diethyl Phthalate ND 0.014 1.37 4-Chloroaniline ND 0.027 1.37 Diethyl Phthalate ND 0.014 1.37 Hexachloro-1.3-Butadiene ND 0.027 1.37 Butyl Benzyl Phthalate ND 0.014 1.37 2-Methylnaphthalene ND 0.027 1.37 Di-n-Octyl Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 2-A-Dinitrotoluene ND 0.027 1.37 Phenanthrene ND	2,4,5-Trichlorophenol	ND	0.027	1.37		Benzoic Acid			ND	0.14	1.37	
Dimethyl Phthalate 0.077 0.014 1.37 1,2,4-Trichlorobenzene ND 0.027 1.37 Diethyl Phthalate ND 0.014 1.37 4-Chloroaniline ND 0.027 1.37 Di-n-Butyl Phthalate ND 0.014 1.37 4-Chloroaniline ND 0.027 1.37 Bis(2-Ethylhexyl) Phthalate ND 0.014 1.37 2-Methylnaphthalene ND 0.027 1.37 Bis(2-Ethylhexyl) Phthalate ND 0.014 1.37 1-Methylnaphthalene ND 0.027 1.37 Di-n-Octyl Phthalate ND 0.014 1.37 1-Methylnaphthalene ND 0.027 1.37 Acenaphthylen ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthylen ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Phenanthrene ND	Pentachlorophenol	ND	0.027	1.37		Bis(2-Chloroet	hoxv) Meth	nane	ND	0.027	1.37	
Diethyl Phthalate ND 0.014 1.37 4-Chloroaniline ND 0.027 1.37 Di-n-Butyl Phthalate ND 0.014 1.37 Hexachloro-1,3-Butadiene ND 0.027 1.37 Butyl Benzyl Phthalate ND 0.014 1.37 2-Methylnaphthalene ND 0.027 1.37 Bis(2-Ethylhexyl) Phthalate ND 0.014 1.37 1-Methylnaphthalene ND 0.027 1.37 Di-n-Ctyl Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Naphthalene ND 0.027 1.37 2-Chloronaphthalene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 2-Abitroaniline ND 0.027 1.37 Phenanthrene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Pyrene ND	Dimethyl Phthalate	0.077	0.014	1.37		1,2,4-Trichloro	benzene		ND	0.027	1.37	
Di-n-Butyl Phthalate ND 0.014 1.37 Hexachloro-1,3-Butadiene ND 0.027 1.37 Butyl Benzyl Phthalate ND 0.014 1.37 2-Methylnaphthalene ND 0.027 1.37 Bis(2-Ethylhexyl) Phthalate ND 0.014 1.37 1-Methylnaphthalene ND 0.027 1.37 Di-n-Octyl Phthalate ND 0.014 1.37 1-Methylnaphthalene ND 0.027 1.37 Naphthalene ND 0.027 1.37 2-Chloronaphthalene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Phenanthrene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Pyrene ND 0.	Diethyl Phthalate	ND	0.014	1.37		4-Chloroaniline)		ND	0.027	1.37	
Butyl Benzyl Phthalate ND 0.014 1.37 2-Methylnaphthalene ND 0.027 1.37 Bis(2-Ethylhexyl) Phthalate ND 0.014 1.37 1-Methylnaphthalene ND 0.027 1.37 Di-n-Octyl Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Naphthalene ND 0.027 1.37 2-Chloronaphthalene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Phenanthrene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Benzo (a) Anthracene ND <	Di-n-Butyl Phthalate	ND	0.014	1.37		Hexachloro-1.3	3-Butadien	e	ND	0.027	1.37	
Bis(2-Ethylhexyl) Phthalate ND 0.014 1.37 1-Methylnaphthalene ND 0.027 1.37 Di-n-Octyl Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Naphthalene ND 0.027 1.37 2-Chloronaphthalene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Acenaphthene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Phenathrene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Phenathrene ND 0.027 1.37 2,6-Dinitrotoluene ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 <	Butyl Benzyl Phthalate	ND	0.014	1.37		2-Methylnaphth	nalene		ND	0.027	1.37	
Di-n-Octyl Phthalate ND 0.014 1.37 Hexachlorocyclopentadiene ND 0.027 1.37 Naphthalene ND 0.027 1.37 2-Chloronaphthalene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Phenanthrene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Anthracene ND 0.027 1.37 2,6-Dinitrotoluene ND 0.027 1.37 Fluoranthene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37	Bis(2-Ethylhexyl) Phthalate	ND	0.014	1.37		1-Methylnaphth	nalene		ND	0.027	1.37	
Naphthalene ND 0.027 1.37 2-Chloronaphthalene ND 0.027 1.37 Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 2.4-Dinitrotoluene ND 0.027 1.37 Phenanthrene ND 0.027 1.37 2.6-Dinitrotoluene ND 0.027 1.37 Anthracene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Nitroaniline ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Chysene ND 0.027 1.37 Hexachlorobenze	Di-n-Octyl Phthalate	ND	0.014	1.37		Hexachlorocyc	lopentadie	ne	ND	0.027	1.37	
Acenaphthylene ND 0.027 1.37 2-Nitroaniline ND 0.027 1.37 Acenaphthene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Phenanthrene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Anthracene ND 0.027 1.37 2,6-Dinitrotoluene ND 0.027 1.37 Fluoranthene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Benzo (b) Fluoranthene ND 0.027 1.37	Naphthalene	ND	0.027	1.37		2-Chloronapht	halene		ND	0.027	1.37	
Acenaphtene ND 0.027 1.37 3-Nitroaniline ND 0.027 1.37 Fluorene ND 0.027 1.37 Dibenzofuran ND 0.027 1.37 Phenanthrene ND 0.027 1.37 Dibenzofuran ND 0.027 1.37 Anthracene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Fluoranthene ND 0.027 1.37 2,6-Dinitrotoluene ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Nitroaniline ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine<	Acenaphthylene	ND	0.027	1.37		2-Nitroaniline			ND	0.027	1.37	
Fluorene ND 0.027 1.37 Dibenzofuran ND 0.027 1.37 Phenanthrene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Anthracene ND 0.027 1.37 2,6-Dinitrotoluene ND 0.027 1.37 Fluoranthene ND 0.022 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Nitroaniline ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37	Acenaphthene	ND	0.027	1.37		3-Nitroaniline			ND	0.027	1.37	
Phenanthrene ND 0.027 1.37 2,4-Dinitrotoluene ND 0.027 1.37 Anthracene ND 0.027 1.37 2,6-Dinitrotoluene ND 0.027 1.37 Fluoranthene ND 0.022 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Nitroaniline ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Chrysene ND 0.027 1.37 N-Nitrosodiphenylamine ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.027 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027	Fluorene	ND	0.027	1.37		Dibenzofuran			ND	0.027	1.37	
Anthracene ND 0.027 1.37 2,6-Dinitrotoluene ND 0.027 1.37 Fluoranthene ND 0.022 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Chrysene ND 0.027 1.37 N-Nitrosodiphenylamine ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (b) Fluoranthene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.027 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND	Phenanthrene	ND	0.027	1.37		2,4-Dinitrotolue	ene		ND	0.027	1.37	
Fluoranthene ND 0.022 1.37 4-Chlorophenyl-Phenyl Ether ND 0.027 1.37 Pyrene ND 0.027 1.37 4-Nitroaniline ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Chrysene ND 0.027 1.37 N-Nitrosodiphenylamine ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (b) Fluoranthene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.027 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND 0.027 1.37 Surrogates: ND 0.027 1.37 Benzo (g,h,i) Perylene ND	Anthracene	ND	0.027	1.37		2,6-Dinitrotolue	ene		ND	0.027	1.37	
Pyrene ND 0.027 1.37 4-Nitroaniline ND 0.027 1.37 Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Chrysene ND 0.027 1.37 N-Nitrosodiphenylamine ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (b) Fluoranthene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.027 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Benzo (g,h,i) Perylene ND 0.027 1.37 Surrogates: BEC (%) Control Qual	Fluoranthene	ND	0.022	1.37		4-Chloropheny	l-Phenyl E	ther	ND	0.027	1.37	
Benzo (a) Anthracene ND 0.027 1.37 Azobenzene ND 0.027 1.37 Chrysene ND 0.027 1.37 N-Nitrosodiphenylamine ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (b) Fluoranthene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.027 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND 0.027 1.37 Surrogates: REC (%) Control Qual	Pyrene	ND	0.027	1.37		4-Nitroaniline			ND	0.027	1.37	
Chrystein ND 0.027 1.37 N-Nitrosodiphenylamine ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (b) Fluoranthene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.14 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Benzo (g,h,i) Perylene ND 0.027 1.37 Surrogates: REC (%) Control Qual	Benzo (a) Anthracene	ND	0.027	1.37		Azobenzene			ND	0.027	1.37	
Benzo (k) Fluoranthene ND 0.027 1.37 4-Bromophenyl-Phenyl Ether ND 0.027 1.37 Benzo (b) Fluoranthene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.027 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Benzo (g,h,i) Perylene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual	Chrysene	ND	0.027	1.37		N-Nitrosodiphe	enylamine		ND	0.027	1.37	
Benzo (b) Fluoranthene ND 0.027 1.37 Hexachlorobenzene ND 0.027 1.37 Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.14 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Benzo (g,h,i) Perylene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual	Benzo (k) Fluoranthene	ND	0.027	1.37		4-Bromopheny	I-Phenyl E	ther	ND	0.027	1.37	
Benzo (a) Pyrene ND 0.027 1.37 Benzidine ND 0.14 1.37 Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Benzo (g,h,i) Perylene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual	Benzo (b) Fluoranthene	ND	0.027	1.37		Hexachloroben	izene		ND	0.027	1.37	
Indeno (1,2,3-c,d) Pyrene ND 0.027 1.37 Pyridine ND 0.027 1.37 Dibenz (a,h) Anthracene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Benzo (g,h,i) Perylene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual	Benzo (a) Pyrene	ND	0.027	1.37		Benzidine			ND	0.14	1.37	
Dibenz (a,h) Anthracene ND 0.027 1.37 3,3'-Dichlorobenzidine ND 0.027 1.37 Benzo (g,h,i) Perylene ND 0.027 1.37 3 3 3 3 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual	Indeno (1,2,3-c,d) Pyrene	ND	0.027	1.37		Pyridine			ND	0.027	1.37	
Benzo (g,h,i) Perylene ND 0.027 1.37 Surrogates: BEC (%) Control Qual Surrogates: BEC (%) Control Qual	Dibenz (a,h) Anthracene	ND	0.027	1.37		3,3'-Dichlorobe	enzidine		ND	0.027	1.37	
Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual	Benzo (g,h,i) Perylene	ND	0.027	1.37								
Limits	Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>ll</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
2-Fluorophenol 59 25-121 Phenol-d6 69 24-113	2-Fluorophenol	59	25-121			Phenol-d6			69	24-113		
Nitrobenzene-d5 46 23-120 2-Fluorohinhenvl 55 30-115	Nitrobenzene-d5	46	23-120			2-Eluorobinher	nvl		55	30-115		
2,4,6-Tribromophenol 71 19-122 p-Terphenyl-d14 87 18-137	2,4,6-Tribromophenol	71	19-122			p-Terphenyl-d1	14		87	18-137		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Work Order No:

Preparation: Method:

Units:

Page 14 of 63

EPA 3545

mg/kg

EPA 8270C

Page 3 of 6

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Nelac
04/11/13
13-04-0823

Project:	Tire	Fire	Property
----------	------	------	----------

Client Sample Number			Lal N	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy	⊺ime zed	QC Batch ID
Tire-Fire-2-0.0'-0.1'			13-04-0)823-3-BF	04/09/13 12:10	Solid	GC/MS CCC	04/23/13	04/24 17:5	/13 56	130423L06
Comment(s): -The sample volume rec	eived was	ess than r	equired	resulting in	an elevated rep	orting limi	t.				
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter er			Result	<u>RL</u>	DF	Qual
Phenol	ND	0.031	1.57		N-Nitrosodimet	hylamine		ND	0.031	1.57	
2-Chlorophenol	ND	0.031	1.57		Aniline	,		ND	0.031	1.57	
2-Methylphenol	ND	0.031	1.57		Bis(2-Chloroeth	nyl) Ether		ND	0.16	1.57	
3/4-Methylphenol	ND	0.031	1.57		1,3-Dichlorober	nzene		ND	0.031	1.57	
2-Nitrophenol	ND	0.031	1.57		1,4-Dichlorober	nzene		ND	0.031	1.57	
2,4-Dimethylphenol	ND	0.031	1.57		Benzyl Alcohol			ND	0.031	1.57	
2,4-Dichlorophenol	ND	0.031	1.57		1,2-Dichlorober	nzene		ND	0.031	1.57	
4-Chloro-3-Methylphenol	ND	0.031	1.57		Bis(2-Chloroisc	propyl) E	ther	ND	0.031	1.57	
2,4-Dinitrophenol	ND	0.16	1.57		N-Nitroso-di-n-	propylami	ne	ND	0.031	1.57	
4-Nitrophenol	ND	0.031	1.57		Hexachloroetha	ane		ND	0.031	1.57	
4,6-Dinitro-2-Methylphenol	ND	0.16	1.57		Nitrobenzene			ND	0.16	1.57	
2,4,6-Trichlorophenol	ND	0.031	1.57		Isophorone			ND	0.031	1.57	
2,4,5-Trichlorophenol	ND	0.031	1.57		Benzoic Acid			0.28	0.16	1.57	
Pentachlorophenol	ND	0.031	1.57		Bis(2-Chloroeth	noxy) Meth	nane	ND	0.031	1.57	
Dimethyl Phthalate	0.091	0.016	1.57		1,2,4-Trichlorol	benzene		ND	0.031	1.57	
Diethyl Phthalate	ND	0.016	1.57		4-Chloroaniline			ND	0.031	1.57	
Di-n-Butyl Phthalate	ND	0.016	1.57		Hexachloro-1,3	-Butadien	е	ND	0.031	1.57	
Butyl Benzyl Phthalate	ND	0.016	1.57		2-Methylnaphth	alene		ND	0.031	1.57	
Bis(2-Ethylhexyl) Phthalate	0.042	0.016	1.57		1-Methylnaphth	alene		ND	0.031	1.57	
Di-n-Octyl Phthalate	ND	0.016	1.57		Hexachlorocycl	opentadie	ne	ND	0.031	1.57	
Naphthalene	ND	0.031	1.57		2-Chloronaphth	nalene		ND	0.031	1.57	
Acenaphthylene	ND	0.031	1.57		2-Nitroaniline			ND	0.031	1.57	
Acenaphthene	ND	0.031	1.57		3-Nitroaniline			ND	0.031	1.57	
Fluorene	ND	0.031	1.57		Dibenzofuran			ND	0.031	1.57	
Phenanthrene	ND	0.031	1.57		2,4-Dinitrotolue	ne		ND	0.031	1.57	
Anthracene	ND	0.031	1.57		2,6-Dinitrotolue	ene		ND	0.031	1.57	
Fluoranthene	ND	0.025	1.57		4-Chlorophenyl	-Phenyl E	ther	ND	0.031	1.57	
Pyrene	ND	0.031	1.57		4-Nitroaniline	,		ND	0.031	1.57	
Benzo (a) Anthracene	ND	0.031	1.57		Azobenzene			ND	0.031	1.57	
Chrysene	ND	0.031	1.57		N-Nitrosodiphe	nylamine		ND	0.031	1.57	
Benzo (k) Fluoranthene	ND	0.031	1.57		4-Bromophenyl	-Phenyl E	ther	ND	0.031	1.57	
Benzo (b) Fluoranthene	ND	0.031	1.57		Hexachloroben	zene		ND	0.031	1.57	
Benzo (a) Pyrene	ND	0.031	1.57		Benzidine			ND	0.16	1.57	
Indeno (1,2,3-c,d) Pyrene	ND	0.031	1.57		Pyridine			ND	0.031	1.57	
Dibenz (a,h) Anthracene	ND	0.031	1.57		3,3'-Dichlorobe	nzidine		ND	0.031	1.57	
Benzo (g,h,i) Pervlene	ND	0.031	1.57								
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
2-Eluorophenol	41	25-121			Phenol-d6			59	24-113		
Nitrobenzene-d5	38	23-120			2-Eluorobinhon	vl		46	30-115		
	52	10 400				yı A		100	10 407		
2,4,0-1 ribromopnenol	55	19-122			p-i erpnenyi-d1	4		109	10-13/		

RL - Reporting Limit , DF - Dilution Factor ,

```
Qual - Qualifiers
```

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 $\,\cdot\,\,$ TEL:(714) 895-5494 $\,\cdot\,\,$ FAX: (714) 894-7501

Date Received: Work Order No:

04/11/13

13-04-0823

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Arcata, CA 95521-6742		Preparation:								
				Method [.]					FP	A 8270C
				l Inits:					LI /	ma/ka
Project: Tire Fire Property	,			Orinto.					Day	no 4 of 6
Flojeci. The Flie Flopens	/								га	JE 4 01 0
Client Sample Number			Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy	Time zed	QC Batch ID
Tire-Fire-2-0.5'-0.6'			13-04-0823-4-B	04/09/13 12:20	Solid	GC/MS CCC	04/23/13	04/24 18:2	/13 22	130423L06
Comment(s): -The sample volume re	eceived was	less than r	equired resulting in	n an elevated rep	orting limi	t.				
Parameter	<u>Result</u>	<u>RL</u>	DF Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Phenol	ND	0.053	2.65	N-Nitrosodimet	thvlamine		ND	0.053	2.65	5
2-Chlorophenol	ND	0.053	2.65	Aniline	,		ND	0.053	2.65	5
2-Methylphenol	ND	0.053	2.65	Bis(2-Chloroet	hyl) Ether		ND	0.26	2.65	5
3/4-Methylphenol	ND	0.053	2.65	1,3-Dichlorobe	nzene		ND	0.053	2.65	5
2-Nitrophenol	ND	0.053	2.65	1,4-Dichlorobe	nzene		ND	0.053	2.65	5
2.4-Dimethylphenol	ND	0.053	2.65	Benzvl Alcohol			ND	0.053	2.65	5
2.4-Dichlorophenol	ND	0.053	2.65	1.2-Dichlorobe	nzene		ND	0.053	2.65	5
4-Chloro-3-Methylphenol	ND	0.053	2.65	Bis(2-Chlorois	E (Ivgorac	ther	ND	0.053	2.65	5
2,4-Dinitrophenol	ND	0.26	2.65	N-Nitroso-di-n-	propylami	ne	ND	0.053	2.65	5
4-Nitrophenol	ND	0.053	2.65	Hexachloroetha	ane		ND	0.053	2.65	5
4,6-Dinitro-2-Methylphenol	ND	0.26	2.65	Nitrobenzene			ND	0.26	2.65	5
2,4,6-Trichlorophenol	ND	0.053	2.65	Isophorone			ND	0.053	2.65	5
2,4,5-Trichlorophenol	ND	0.053	2.65	Benzoic Acid			ND	0.26	2.65	5
Pentachlorophenol	ND	0.053	2.65	Bis(2-Chloroetl	hoxy) Meth	nane	ND	0.053	2.65	5
Dimethyl Phthalate	0.091	0.026	2.65	1,2,4-Trichloro	benzene		ND	0.053	2.65	5
Diethyl Phthalate	ND	0.026	2.65	4-Chloroaniline	•		ND	0.053	2.65	5
Di-n-Butyl Phthalate	ND	0.026	2.65	Hexachloro-1,3	B-Butadien	e	ND	0.053	2.65	5
Butyl Benzyl Phthalate	ND	0.026	2.65	2-Methylnaphth	nalene		ND	0.053	2.65	5
Bis(2-Ethylhexyl) Phthalate	ND	0.026	2.65	1-Methylnaphth	nalene		ND	0.053	2.65	5
Di-n-Octyl Phthalate	ND	0.026	2.65	Hexachlorocyc	lopentadie	ene	ND	0.053	2.65	5
Naphthalene	ND	0.053	2.65	2-Chloronaphth	nalene		ND	0.053	2.65	5
Acenaphthylene	ND	0.053	2.65	2-Nitroaniline			ND	0.053	2.65	5
Acenaphthene	ND	0.053	2.65	3-Nitroaniline			ND	0.053	2.65	5
Fluorene	ND	0.053	2.65	Dibenzofuran			ND	0.053	2.65	5
Phenanthrene	ND	0.053	2.65	2,4-Dinitrotolue	ene		ND	0.053	2.65	5
Anthracene	ND	0.053	2.65	2,6-Dinitrotolue	ene		ND	0.053	2.65	5
Fluoranthene	ND	0.042	2.65	4-Chloropheny	I-Phenyl E	ther	ND	0.053	2.65	5
Pyrene	ND	0.053	2.65	4-Nitroaniline	-		ND	0.053	2.65	5
Benzo (a) Anthracene	ND	0.053	2.65	Azobenzene			ND	0.053	2.65	5
Chrysene	ND	0.053	2.65	N-Nitrosodiphe	enylamine		ND	0.053	2.65	5
Benzo (k) Fluoranthene	ND	0.053	2.65	4-Bromopheny	I-Phenyl E	ther	ND	0.053	2.65	5
Benzo (b) Fluoranthene	ND	0.053	2.65	Hexachloroben	zene		ND	0.053	2.65	5
Benzo (a) Pyrene	ND	0.053	2.65	Benzidine			ND	0.26	2.65	5
Indeno (1,2,3-c,d) Pyrene	ND	0.053	2.65	Pyridine			ND	0.053	2.65	5
Dibenz (a,h) Anthracene	ND	0.053	2.65	3,3'-Dichlorobe	enzidine		ND	0.053	2.65	5
Benzo (g,h,i) Perylene	ND	0.053	2.65							
Surrogates:	<u>RE</u> C (%)	Control	Qual	Surrogates:			<u>REC (%)</u>	Control	<u>C</u>	lual
	<i></i>	Limits						Limits		
2-Fluorophenol	67	25-121		Phenol-d6			73	24-113		
Nitrobenzene-d5	55	23-120		2-Fluorobiphen	w		65	30-115		
2 4 6-Tribromonhenol	81	19-122		n-Ternhenvl-d1	4		140	18-137		27
				P i orprioriyi-u i						<u> </u>

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

nM

Page 16 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

	Date Rec	eived:			04/11/13						
	Work Ord	er No:			13-04-0823						
	Preparatio	on:				E	PA 3545				
	Method: Units:					EP	A 8270C mg/kg				
						Pa	ge 5 of 6				
ab Sample	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	Time vzed	QC Batch ID				
-0823-9-BF	04/09/13 11:30	Solid	GC/MS CCC	04/23/13	04/24 18:	4/13 48	130423L06				
d resulting in	an elevated rep	orting limit									
<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>				
	N-Nitrosodimet	hylamine		ND	0.027	1.34	1				
	Aniline			ND	0.027	1.34	1				
	Bis(2-Chloroeth	nyl) Ether		ND	0.13	1.34	1				
	1,3-Dichlorobe	nzene		ND	0.027	1.34	1				
	1 / Luchlorobo			N II N	0 0 0 7	4 0	4				

Project: Tire Fire Property

Client Sample Number		Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ïme zed	QC Batch ID	
Tire-Fire-5-0.0'-0.1'			13-04-0823-9-BF		04/09/13 11:30	Solid	GC/MS CCC	04/23/13	04/24 18:4	/13 8	130423L06
Comment(s): -The sample volume rec	eived was l	ess than r	equired ı	resulting in	an elevated repo	orting limit					
Parameter_	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>
Phenol	ND	0.027	1.34		N-Nitrosodimet	hvlamine		ND	0.027	1.34	
2-Chlorophenol	ND	0.027	1.34		Aniline	,		ND	0.027	1.34	
2-Methylphenol	ND	0.027	1.34		Bis(2-Chloroeth	nvl) Ether		ND	0.13	1.34	
3/4-Methylphenol	ND	0.027	1.34		1.3-Dichlorober	nzene		ND	0.027	1.34	
2-Nitrophenol	ND	0.027	1.34		1.4-Dichlorober	nzene		ND	0.027	1.34	
2.4-Dimethylphenol	ND	0.027	1.34		Benzvl Alcohol			ND	0.027	1.34	
2.4-Dichlorophenol	ND	0.027	1.34		1.2-Dichlorober	nzene		ND	0.027	1.34	
4-Chloro-3-Methylphenol	ND	0.027	1.34		Bis(2-Chloroisc	propyl) Et	her	ND	0.027	1.34	
2.4-Dinitrophenol	ND	0.13	1.34		N-Nitroso-di-n-	propylamir	ne	ND	0.027	1.34	
4-Nitrophenol	ND	0.027	1.34		Hexachloroetha	ane		ND	0.027	1.34	
4,6-Dinitro-2-Methylphenol	ND	0.13	1.34		Nitrobenzene			ND	0.13	1.34	
2.4.6-Trichlorophenol	ND	0.027	1.34		Isophorone			ND	0.027	1.34	
2,4,5-Trichlorophenol	ND	0.027	1.34		Benzoic Acid			ND	0.13	1.34	
Pentachlorophenol	ND	0.027	1.34		Bis(2-Chloroeth	noxy) Meth	ane	ND	0.027	1.34	
Dimethyl Phthalate	0.074	0.013	1.34		1,2,4-Trichlorob	benzene		ND	0.027	1.34	
Diethyl Phthalate	ND	0.013	1.34		4-Chloroaniline			ND	0.027	1.34	
Di-n-Butyl Phthalate	ND	0.013	1.34		Hexachloro-1,3	-Butadien	е	ND	0.027	1.34	
Butyl Benzyl Phthalate	ND	0.013	1.34		2-Methylnaphth	alene		ND	0.027	1.34	
Bis(2-Ethylhexyl) Phthalate	0.042	0.013	1.34		1-Methylnaphth	alene		ND	0.027	1.34	
Di-n-Octyl Phthalate	ND	0.013	1.34		Hexachlorocycl	opentadie	ne	ND	0.027	1.34	
Naphthalene	0.030	0.027	1.34		2-Chloronaphth	nalene		ND	0.027	1.34	
Acenaphthylene	ND	0.027	1.34		2-Nitroaniline			ND	0.027	1.34	
Acenaphthene	ND	0.027	1.34		3-Nitroaniline			ND	0.027	1.34	
Fluorene	ND	0.027	1.34		Dibenzofuran			ND	0.027	1.34	
Phenanthrene	ND	0.027	1.34		2,4-Dinitrotolue	ne		ND	0.027	1.34	
Anthracene	ND	0.027	1.34		2,6-Dinitrotolue	ne		ND	0.027	1.34	
Fluoranthene	ND	0.021	1.34		4-Chlorophenyl	-Phenyl E	ther	ND	0.027	1.34	
Pyrene	ND	0.027	1.34		4-Nitroaniline	•		ND	0.027	1.34	
Benzo (a) Anthracene	ND	0.027	1.34		Azobenzene			ND	0.027	1.34	
Chrysene	ND	0.027	1.34		N-Nitrosodiphe	nylamine		ND	0.027	1.34	
Benzo (k) Fluoranthene	ND	0.027	1.34		4-Bromophenyl	-Phenyl E	ther	ND	0.027	1.34	
Benzo (b) Fluoranthene	ND	0.027	1.34		Hexachloroben	zene		ND	0.027	1.34	
Benzo (a) Pyrene	ND	0.027	1.34		Benzidine			ND	0.13	1.34	
Indeno (1,2,3-c,d) Pyrene	ND	0.027	1.34		Pyridine			0.040	0.027	1.34	
Dibenz (a,h) Anthracene	ND	0.027	1.34		3,3'-Dichlorobe	nzidine		ND	0.027	1.34	
Benzo (g,h,i) Perylene	ND	0.027	1.34								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
2-Fluorophenol	41	25-121			Phenol-d6			59	24-113		
Nitrobenzene-d5	45	23-120			2-Eluorobiphen	vl		52	30-115		
2 4 6-Tribromophenol	76	19-122			p-Terphenyl-d1	4		150	18-137		2.7
_, ., • • • • • • • • • • • • • • • • • •	-	·- · 			r i orphonyru i	·					<u> </u>

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

MM

Page 17 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C
Units:	mg/kg
	Page 6 of 6

Project: Tire Fire Property

Client Sample Number			Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	Гime ⁄zed	QC Batch ID
Method Blank		097	7-01-009-87	N/A	Solid	GC/MS CCC	04/23/13	04/24 11:4	1/13 44	130423L06
Parameter Result	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Phenol ND	0.020	1		N-Nitrosodimet	hylamine		ND	0.020	1	
2-Chlorophenol ND	0.020	1		Aniline			ND	0.020	1	
2-Methylphenol ND	0.020	1		Bis(2-Chloroeth	nyl) Ether		ND	0.10	1	
3/4-Methylphenol ND	0.020	1		1,3-Dichlorober	nzene		ND	0.020	1	
2-Nitrophenol ND	0.020	1		1,4-Dichlorober	nzene		ND	0.020	1	
2,4-Dimethylphenol ND	0.020	1		Benzyl Alcohol			ND	0.020	1	
2,4-Dichlorophenol ND	0.020	1		1,2-Dichlorober	nzene		ND	0.020	1	
4-Chloro-3-Methylphenol ND	0.020	1		Bis(2-Chloroisc	propyl) E	ther	ND	0.020	1	
2,4-Dinitrophenol ND	0.10	1		N-Nitroso-di-n-	propylami	ne	ND	0.020	1	
4-Nitrophenol ND	0.020	1		Hexachloroetha	ane		ND	0.020	1	
4,6-Dinitro-2-Methylphenol ND	0.10	1		Nitrobenzene			ND	0.10	1	
2,4,6-Trichlorophenol ND	0.020	1		Isophorone			ND	0.020	1	
2,4,5-Trichlorophenol ND	0.020	1		Benzoic Acid			ND	0.10	1	
Pentachlorophenol ND	0.020	1		Bis(2-Chloroeth	noxy) Meth	nane	ND	0.020	1	
Dimethyl Phthalate ND	0.010	1		1,2,4-Trichlorol	benzene		ND	0.020	1	
Diethyl Phthalate ND	0.010	1		4-Chloroaniline			ND	0.020	1	
Di-n-Butyl Phthalate ND	0.010	1		Hexachloro-1,3	-Butadien	е	ND	0.020	1	
Butyl Benzyl Phthalate ND	0.010	1		2-Methylnaphth	nalene		ND	0.020	1	
Bis(2-Ethylhexyl) Phthalate ND	0.010	1		1-Methylnaphth	nalene		ND	0.020	1	
Di-n-Octyl Phthalate ND	0.010	1		Hexachlorocycl	opentadie	ne	ND	0.020	1	
Naphthalene ND	0.020	1		2-Chloronaphth	nalene		ND	0.020	1	
Acenaphthylene ND	0.020	1		2-Nitroaniline			ND	0.020	1	
Acenaphthene ND	0.020	1		3-Nitroaniline			ND	0.020	1	
Fluorene ND	0.020	1		Dibenzofuran			ND	0.020	1	
Phenanthrene ND	0.020	1		2,4-Dinitrotolue	ene		ND	0.020	1	
Anthracene ND	0.020	1		2,6-Dinitrotolue	ne		ND	0.020	1	
Fluoranthene ND	0.016	1		4-Chlorophenyl	-Phenyl E	ther	ND	0.020	1	
Pyrene ND	0.020	1		4-Nitroaniline			ND	0.020	1	
Benzo (a) Anthracene ND	0.020	1		Azobenzene			ND	0.020	1	
Chrysene ND	0.020	1		N-Nitrosodiphe	nylamine		ND	0.020	1	
Benzo (k) Fluoranthene ND	0.020	1		4-Bromophenyl	-Phenyl E	ther	ND	0.020	1	
Benzo (b) Fluoranthene ND	0.020	1		Hexachloroben	zene		ND	0.020	1	
Benzo (a) Pyrene ND	0.020	1		Benzidine			ND	0.10	1	
Indeno (1,2,3-c,d) Pyrene ND	0.020	1		Pyridine			ND	0.020	1	
Dibenz (a,h) Anthracene ND	0.020	1		3,3'-Dichlorobe	nzidine		ND	0.020	1	
Benzo (g,h,i) Perylene ND	0.020	1								
Surrogates: REC (%)	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>
2-Fluorophenol 100	25-121			Phenol-d6			103	24-113		
Nitrobenzene-d5 87	23-120			2-Fluorobiphen	v		81	30-115		
2,4,6-Tribromophenol 77	19-122			p-Terphenyl-d1	4		102	18-137		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulum

04/11/13

Freshwater Environmental Services 78 Sunny Brae Center Arcata,

78 Sunny Brae Center		Work Ord	13-04-0823									
Arcata. CA 95521-6742		Preparati	on:			EPA 3545						
					Method:	-			EPA 8270C			
					Units:						ma/ka	
Project. Tire Fire Prope	rtv				ernte.					Рэ	ap 1 of 5	
	ity							_		10	90 1 01 0	
Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal ⁻	Time vzed	QC Batch II	
Tire-Fire-3-0.0'-0.1'			13-04	-0823-5-B	04/09/13 11:35	Solid	GC/MS CCC	; 04/12/13	04/1 18:	5/13 09	130412L07	
Comment(s): -The reporting limit	is elevated resu	Iting from	matrix	interference).							
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual	
Acenaphthene	ND	1.0	2		2,4-Dimethylph	nenol		ND	1.0	2		
Acenaphthylene	ND	1.0	2		4,6-Dinitro-2-M	1ethylpheno	bl	ND	5.0	2		
Aniline	ND	1.0	2		2.4-Dinitropher	nol		ND	5.0	2		
Anthracene	ND	1.0	2		2.4-Dinitrotolue	ene		ND	1.0	2		
Azobenzene	ND	1.0	2		2.6-Dinitrotolue	ene		ND	1.0	2		
Benzidine	ND	20	2		Fluoranthene			ND	1.0	2		
Benzo (a) Anthracene	ND	1.0	2		Fluorene			ND	1.0	2		
Benzo (a) Pyrene	ND	1.0	2		Hexachloro-1.3	3-Butadiene	9	ND	1.0	2		
Benzo (b) Fluoranthene	ND	1.0	2		Hexachlorober	zene		ND	1.0	2		
Benzo (a.h.i) Pervlene	ND	1.0	2		Hexachlorocvc		ne	ND	5.0	2		
Benzo (k) Fluoranthene	ND	1.0	2		Hexachloroeth	ane		ND	1.0	2		
Benzoic Acid	ND	5.0	2		Indeno (1.2.3-0	c.d) Pyrene		ND	1.0	2		
Benzvl Alcohol	ND	1.0	2		Isophorone	-,-, · , · -··-		ND	1.0	2		
Bis(2-Chloroethoxy) Methane	ND	1.0	2		2-Methvlnapht	halene		ND	1.0	2		
Bis(2-Chloroethyl) Ether	ND	5.0	2		1-Methylnapht	halene		ND	1.0	2		
Bis(2-Chloroisopropyl) Ether	ND	1.0	2		2-Methylpheno	b		ND	1.0	2		
Bis(2-Ethylhexyl) Phthalate	ND	1.0	2		3/4-Methylphe	nol		ND	1.0	2		
4-Bromophenyl-Phenyl Ether	ND	1.0	2		N-Nitroso-di-n-	-propylamir	ne	ND	1.0	2		
Butyl Benzyl Phthalate	ND	1.0	2		N-Nitrosodime	thvlamine		ND	1.0	2		
4-Chloro-3-Methylphenol	ND	1.0	2		N-Nitrosodiphe	envlamine		ND	1.0	2		
4-Chloroaniline	ND	1.0	2		Naphthalene	,		ND	1.0	2		
2-Chloronaphthalene	ND	1.0	2		4-Nitroaniline			ND	1.0	2		
2-Chlorophenol	ND	1.0	2		3-Nitroaniline			ND	1.0	2		
4-Chlorophenyl-Phenyl Ether	ND	1.0	2		2-Nitroaniline			ND	1.0	2		
Chrysene	ND	1.0	2		Nitrobenzene			ND	5.0	2		
Di-n-Butyl Phthalate	ND	1.0	2		4-Nitrophenol			ND	1.0	2		
Di-n-Octyl Phthalate	ND	1.0	2		2-Nitrophenol			ND	1.0	2		
Dibenz (a,h) Anthracene	ND	1.0	2		Pentachloroph	enol		ND	5.0	2		
Dibenzofuran	ND	1.0	2		Phenanthrene			ND	1.0	2		
1,2-Dichlorobenzene	ND	1.0	2		Phenol			ND	1.0	2		
1,3-Dichlorobenzene	ND	1.0	2		Pyrene			ND	1.0	2		
1,4-Dichlorobenzene	ND	1.0	2		Pyridine			ND	1.0	2		
3,3'-Dichlorobenzidine	ND	20	2		1,2,4-Trichloro	benzene		ND	1.0	2		
2.4-Dichlorophenol	ND	1.0	2		2.4.6-Trichloro	phenol		ND	1.0	2		
Diethyl Phthalate	ND	1.0	2		2,4,5-Trichloro	phenol		ND	1.0	2		
Dimethyl Phthalate	ND	1.0	2			•			-	-		
Surrogates:	<u>REC (%)</u>	Control Limits	_ <u>Qı</u>	ual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>	
2-Fluorobiphenyl	69	38-134			2-Fluoropheno	l		73	42-120			
Nitrobenzene-d5	66	42-150			p-Terphenvl-d	14		124	35-167			
Phenol-d6	79	46-118			2 4 6-Tribromo	phenol		92	36-132			
	-				_, .,			-				

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

n M

04/11/13

Freshwater Environmental Services 78 Sunny Brae Center Arcata, C

78 Sunny Brae Center					Work Ord	ler No:				13	-04-0823	
Arcata, CA 95521-6742					Preparati	on:			EPA 3545			
					Method:							
					Lipite:					СГ		
					Units.						my/ky	
Project: Tire Fire Prope	rty									Pa	ge 2 of 5	
Client Sample Number			La	ab Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/	Time	QC Batch II	
Tire-Eire-3-0 5'-0 6'			13-04-	0823-6-B	01/09/13	Solid	CC/MS CCC	04/12/13	04/1	5/13	130/121 07	
1110-1110-5-0.5-0.0			13-04-	0025-0-0	11:45	30110	GC/WB CCC	, 04/12/13	19:	29	130412207	
Comment(s): -The reporting limit	is elevated resu	Ilting from	matrix i	nterference								
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual	
Acenaphthene	ND	5.0	10		2,4-Dimethylph	nenol		ND	5.0	10		
Acenaphthylene	ND	5.0	10		4,6-Dinitro-2-M	1ethylphend	bl	ND	25	10		
Aniline	ND	5.0	10		2,4-Dinitropher	nol		ND	25	10		
Anthracene	ND	5.0	10		2,4-Dinitrotolue	ene		ND	5.0	10		
Azobenzene	ND	5.0	10		2,6-Dinitrotolue	ene		ND	5.0	10		
Benzidine	ND	100	10		Fluoranthene			ND	5.0	10		
Benzo (a) Anthracene	ND	5.0	10		Fluorene			ND	5.0	10		
Benzo (a) Pyrene	ND	5.0	10		Hexachloro-1,3	3-Butadiene	9	ND	5.0	10		
Benzo (b) Fluoranthene	ND	5.0	10		Hexachlorober	nzene		ND	5.0	10		
Benzo (g,h,i) Perylene	ND	5.0	10		Hexachlorocyc	lopentadier	ne	ND	25	10		
Benzo (k) Fluoranthene	ND	5.0	10		Hexachloroeth	ane		ND	5.0	10		
Benzoic Acid	ND	25	10		Indeno (1,2,3-0	c,d) Pyrene	•	ND	5.0	10		
Benzyl Alcohol	ND	5.0	10		Isophorone	.,		ND	5.0	10		
Bis(2-Chloroethoxy) Methane	ND	5.0	10		2-Methylnapht	halene		ND	5.0	10		
Bis(2-Chloroethyl) Ether	ND	25	10		1-Methylnaphtl	halene		ND	5.0	10		
Bis(2-Chloroisopropyl) Ether	ND	5.0	10		2-Methylpheno	b		ND	5.0	10		
Bis(2-Ethylhexyl) Phthalate	ND	5.0	10		3/4-Methylphei	nol		ND	5.0	10		
4-Bromophenyl-Phenyl Ether	ND	5.0	10		N-Nitroso-di-n-	-propylamir	ne	ND	5.0	10		
Butyl Benzyl Phthalate	ND	5.0	10		N-Nitrosodime	thylamine		ND	5.0	10		
4-Chloro-3-Methylphenol	ND	5.0	10		N-Nitrosodiphe	enylamine		ND	5.0	10		
4-Chloroaniline	ND	5.0	10		Naphthalene			ND	5.0	10		
2-Chloronaphthalene	ND	5.0	10		4-Nitroaniline			ND	5.0	10		
2-Chlorophenol	ND	5.0	10		3-Nitroaniline			ND	5.0	10		
4-Chlorophenyl-Phenyl Ether	ND	5.0	10		2-Nitroaniline			ND	5.0	10		
Chrysene	ND	5.0	10		Nitrobenzene			ND	25	10		
Di-n-Butyl Phthalate	ND	5.0	10		4-Nitrophenol			ND	5.0	10		
Di-n-Octyl Phthalate	ND	5.0	10		2-Nitrophenol			ND	5.0	10		
Dibenz (a,h) Anthracene	ND	5.0	10		Pentachloroph	enol		ND	25	10		
Dibenzofuran	ND	5.0	10		Phenanthrene			ND	5.0	10		
1,2-Dichlorobenzene	ND	5.0	10		Phenol			ND	5.0	10		
1.3-Dichlorobenzene	ND	5.0	10		Pvrene			ND	5.0	10		
1.4-Dichlorobenzene	ND	5.0	10		Pvridine			ND	5.0	10		
3.3'-Dichlorobenzidine	ND	100	10		1.2.4-Trichloro	benzene		ND	5.0	10		
2,4-Dichlorophenol	ND	5.0	10		2,4,6-Trichloro	phenol		ND	5.0	10		
Diethyl Phthalate	ND	5.0	10		2,4,5-Trichloro	phenol		ND	5.0	10		
Dimethyl Phthalate	ND	5.0	10		, ,=					.5		
Surrogates:	<u>REC (%)</u>	Control Limits	Qu	al	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	. (<u>Qual</u>	
2-Fluorobiphenyl	69	38-134			2-Fluoropheno	l		64	42-120			
Nitrobenzene-d5	60	42-150			p-Terphenvl-d	14		104	35-167			
Phenol-d6	70	46-118			2 4 6-Tribromo	nhenol		57	36-132			

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

n M

Work Order No:

Page 20 of 63

04/11/13

13-04-0823

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95

Arcata, CA 95521-6742		Preparation: EPA 354 Method: EPA 82700 Units: mg/k						PA 3545 A 8270C mg/kg			
Project: Tire Fire Propert	У									Pag	ge 3 of 5
Client Sample Number			Lal N	o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy	⁻ime zed	QC Batch I
Tire-Fire-4-0.0'-0.1'			13-04-0	823-7-B	04/09/13 12:00	Solid	GC/MS CCC	04/12/13	04/15 18:3	/13 36	130412L07
Comment(s): -The reporting limit is	elevated resu	Iting from	matrix in	terference	·.						
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Acenaphthene	ND	1.0	2		2,4-Dimethylpl	henol		ND	1.0	2	
Acenaphthylene	ND	1.0	2		4,6-Dinitro-2-N	Nethylphen	ol	ND	5.0	2	
Aniline	ND	1.0	2		2,4-Dinitrophe	nol		ND	5.0	2	
Anthracene	ND	1.0	2		2,4-Dinitrotolu	ene		ND	1.0	2	
Azobenzene	ND	1.0	2		2,6-Dinitrotolu	ene		ND	1.0	2	
Benzidine	ND	20	2		Fluoranthene			ND	1.0	2	
Benzo (a) Anthracene	ND	1.0	2		Fluorene			ND	1.0	2	
Benzo (a) Pyrene	ND	1.0	2		Hexachloro-1,	3-Butadien	е	ND	1.0	2	
Benzo (b) Fluoranthene	ND	1.0	2		Hexachlorober	nzene		ND	1.0	2	
Benzo (g,h,i) Perylene	ND	1.0	2		Hexachlorocyc	clopentadie	ne	ND	5.0	2	
Benzo (k) Fluoranthene	ND	1.0	2		Hexachloroeth	ane		ND	1.0	2	
Benzoic Acid	ND	5.0	2		Indeno (1,2,3-	c,d) Pyrene	9	ND	1.0	2	
Benzyl Alcohol	ND	1.0	2		Isophorone			ND	1.0	2	
Bis(2-Chloroethoxy) Methane	ND	1.0	2		2-Methylnapht	halene		ND	1.0	2	
Bis(2-Chloroethyl) Ether	ND	5.0	2		1-Methylnapht	halene		ND	1.0	2	
Bis(2-Chloroisopropyl) Ether	ND	1.0	2		2-Methylpheno	ol		ND	1.0	2	
Bis(2-Ethylhexyl) Phthalate	ND	1.0	2		3/4-Methylphe	nol		ND	1.0	2	
4-Bromophenyl-Phenyl Ether	ND	1.0	2		N-Nitroso-di-n	-propylamii	ne	ND	1.0	2	
Butyl Benzyl Phthalate	ND	1.0	2		N-Nitrosodime	ethylamine		ND	1.0	2	
4-Chloro-3-Methylphenol	ND	1.0	2		N-Nitrosodiphe	enylamine		ND	1.0	2	
4-Chloroaniline	ND	1.0	2		Naphthalene			ND	1.0	2	
2-Chloronaphthalene	ND	1.0	2		4-Nitroaniline			ND	1.0	2	
2-Chlorophenol	ND	1.0	2		3-Nitroaniline			ND	1.0	2	
4-Chlorophenyl-Phenyl Ether	ND	1.0	2		2-Nitroaniline			ND	1.0	2	
Chrysene	ND	1.0	2		Nitrobenzene			ND	5.0	2	
Di-n-Butyl Phthalate	ND	1.0	2		4-Nitrophenol			ND	1.0	2	
Di-n-Octyl Phthalate	ND	1.0	2		2-Nitrophenol			ND	1.0	2	
Dibenz (a,h) Anthracene	ND	1.0	2		Pentachloroph	nenol		ND	5.0	2	
Dibenzofuran	ND	1.0	2		Phenanthrene			ND	1.0	2	
1,2-Dichlorobenzene	ND	1.0	2		Phenol			ND	1.0	2	
1,3-Dichlorobenzene	ND	1.0	2		Pyrene			ND	1.0	2	
1,4-Dichlorobenzene	ND	1.0	2		Pyridine			ND	1.0	2	
3,3'-Dichlorobenzidine	ND	20	2		1,2,4- I richlord	benzene		ND	1.0	2	
2,4-Dichlorophenol	ND	1.0	2		2,4,6-1 richlord	phenol		ND	1.0	2	
Dietnyi Phthalate	ND	1.0	2		2,4,5-1 richlord	opnenol		ND	1.0	2	
Dimethyl Phthalate	ND	1.0 Oor (m)	2		0				Contrat	~	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u>I</u>	Surrogates:			<u>KEC (%)</u>	<u>Control</u> Limits	<u>C</u>	<u>tuai</u>
2-Fluorobiphenyl	54	38-134			2-Fluoropheno	bl		48	42-120		
Nitrobenzene-d5	60	42-150			p-Terphenyl-d	14		84	35-167		
Phenol-d6	63	46-118			2,4,6-Tribromo	ophenol		56	36-132		

> RL - Reporting Limit , DF - Dilution Factor

Qual - Qualifiers

nM

04/11/13

Freshwater Environmental Services 78 Sunny Brae Center Arcata,

78 Sunny Brae Center		Work Order No: 13-04											
Arcata, CA 95521-6742					Preparati	on:			EPA 3545				
,			Method:							EPA 8270C			
					l Inite:						ma/ka		
Duciante Tina Fina Ducuna	4				Units.								
Project: Tire Fire Proper	ty									Ра	ge 4 of 5		
Client Sample Number			I	Lab Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/	Time zed	QC Batch II		
			12.0		04/00/13	Solid	CC/MS CCC	04/12/12	04/15	200	120/121 07		
1 ire-Fire-4-0.5 -0.6			13-04	1-0623-6-A	12:05	50110		04/12/13	19:0)2	130412L07		
Comment(s): -The reporting limit is	s elevated resu	Iting from	matrix	interference									
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter 1			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>		
Acenaphthene	ND	2.5	5		2,4-Dimethylph	nenol		ND	2.5	5			
Acenaphthylene	ND	2.5	5		4,6-Dinitro-2-N	lethylpheno	bl	ND	12	5			
Aniline	ND	2.5	5		2,4-Dinitropher	nol		ND	12	5			
Anthracene	ND	2.5	5		2,4-Dinitrotolue	ene		ND	2.5	5			
Azobenzene	ND	2.5	5		2,6-Dinitrotolue	ene		ND	2.5	5			
Benzidine	ND	50	5		Fluoranthene			ND	2.5	5			
Benzo (a) Anthracene	ND	2.5	5		Fluorene			ND	2.5	5			
Benzo (a) Pyrene	ND	2.5	5		Hexachloro-1,3	3-Butadiene	e	ND	2.5	5			
Benzo (b) Fluoranthene	ND	2.5	5		Hexachlorober	nzene		ND	2.5	5			
Benzo (g,h,i) Perylene	ND	2.5	5		Hexachlorocyc	lopentadier	ne	ND	12	5			
Benzo (k) Fluoranthene	ND	2.5	5		Hexachloroeth	ane		ND	2.5	5			
Benzoic Acid	ND	12	5		Indeno (1,2,3-0	c.d) Pyrene	•	ND	2.5	5			
Benzyl Alcohol	ND	2.5	5		Isophorone	.,		ND	2.5	5			
Bis(2-Chloroethoxy) Methane	ND	2.5	5		2-Methylnaphtl	halene		ND	2.5	5			
Bis(2-Chloroethyl) Ether	ND	12	5		1-Methylnaphtl	halene		ND	2.5	5			
Bis(2-Chloroisopropyl) Ether	ND	2.5	5		2-Methylpheno	bl		ND	2.5	5			
Bis(2-Ethylhexyl) Phthalate	ND	2.5	5		3/4-Methylpher	nol		ND	2.5	5			
4-Bromophenyl-Phenyl Ether	ND	2.5	5		N-Nitroso-di-n-	-propylamir	ne	ND	2.5	5			
Butyl Benzyl Phthalate	ND	2.5	5		N-Nitrosodime	thylamine		ND	2.5	5			
4-Chloro-3-Methylphenol	ND	2.5	5		N-Nitrosodiphe	enylamine		ND	2.5	5			
4-Chloroaniline	ND	2.5	5		Naphthalene			ND	2.5	5			
2-Chloronaphthalene	ND	2.5	5		4-Nitroaniline			ND	2.5	5			
2-Chlorophenol	ND	2.5	5		3-Nitroaniline			ND	2.5	5			
4-Chlorophenyl-Phenyl Ether	ND	2.5	5		2-Nitroaniline			ND	2.5	5			
Chrysene	ND	2.5	5		Nitrobenzene			ND	12	5			
Di-n-Butyl Phthalate	ND	2.5	5		4-Nitrophenol			ND	2.5	5			
Di-n-Octyl Phthalate	ND	2.5	5		2-Nitrophenol			ND	2.5	5			
Dibenz (a,h) Anthracene	ND	2.5	5		Pentachloroph	enol		ND	12	5			
Dibenzofuran	ND	2.5	5		Phenanthrene			ND	2.5	5			
1,2-Dichlorobenzene	ND	2.5	5		Phenol			ND	2.5	5			
1,3-Dichlorobenzene	ND	2.5	5		Pyrene			ND	2.5	5			
1,4-Dichlorobenzene	ND	2.5	5		Pyridine			ND	2.5	5			
3,3'-Dichlorobenzidine	ND	50	5		1,2,4-Trichloro	benzene		ND	2.5	5			
2,4-Dichlorophenol	ND	2.5	5		2,4,6-Trichloro	phenol		ND	2.5	5			
Diethyl Phthalate	ND	2.5	5		2,4,5-Trichloro	, phenol		ND	2.5	5			
Dimethyl Phthalate	ND	2.5	5						-	-			
Surrogates	REC (%)	Control	Q	ual	Surrogates:			REC (%)	Control	(Qual		
<u></u>	<u> </u>	Limits							Limits	-	—		
2-Fluorobiphenyl	72	38-134			2-Fluoropheno			69	42-120				
Nitrobenzene-d5	65	42-150			p-Terphenvl-d	14		106	35-167				
Phenol-d6	74	46-118			2 4 6-Tribromo	nhenol		52	36-132				
					_,-,-,- inbioinc	101101			20 IOL				

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

n M

Page 22 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C
Jnits:	mg/kg
	Page 5 of 5

Project: Tire Fire Property

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy	⁻ime zed	QC Batch ID
Method Blank			099	9-12-549-2,450	N/A	Solid	GC/MS CCC	04/12/13	04/15 12:5	/13 54	130412L07
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acenaphthene	ND	0.50	1		2,4-Dimethylph	nenol		ND	0.50	1	
Acenaphthylene	ND	0.50	1		4,6-Dinitro-2-M	lethylphen	ol	ND	2.5	1	
Aniline	ND	0.50	1		2,4-Dinitropher	nol		ND	2.5	1	
Anthracene	ND	0.50	1		2,4-Dinitrotolue	ene		ND	0.50	1	
Azobenzene	ND	0.50	1		2,6-Dinitrotolue	ene		ND	0.50	1	
Benzidine	ND	10	1		Fluoranthene			ND	0.50	1	
Benzo (a) Anthracene	ND	0.50	1		Fluorene			ND	0.50	1	
Benzo (a) Pyrene	ND	0.50	1		Hexachloro-1,3	B-Butadien	e	ND	0.50	1	
Benzo (b) Fluoranthene	ND	0.50	1		Hexachloroben	zene		ND	0.50	1	
Benzo (g,h,i) Perylene	ND	0.50	1		Hexachlorocyc	lopentadie	ne	ND	2.5	1	
Benzo (k) Fluoranthene	ND	0.50	1		Hexachloroetha	ane		ND	0.50	1	
Benzoic Acid	ND	2.5	1		Indeno (1,2,3-c	c,d) Pyrene	9	ND	0.50	1	
Benzyl Alcohol	ND	0.50	1		Isophorone			ND	0.50	1	
Bis(2-Chloroethoxy) Methane	ND	0.50	1		2-Methylnaphth	nalene		ND	0.50	1	
Bis(2-Chloroethyl) Ether	ND	2.5	1		1-Methylnaphth	nalene		ND	0.50	1	
Bis(2-Chloroisopropyl) Ether	ND	0.50	1		2-Methylpheno	1		ND	0.50	1	
Bis(2-Ethylhexyl) Phthalate	ND	0.50	1		3/4-Methylpher	nol		ND	0.50	1	
4-Bromophenyl-Phenyl Ether	ND	0.50	1		N-Nitroso-di-n-	propylami	ne	ND	0.50	1	
Butyl Benzyl Phthalate	ND	0.50	1		N-Nitrosodime	thylamine		ND	0.50	1	
4-Chloro-3-Methylphenol	ND	0.50	1		N-Nitrosodiphe	enylamine		ND	0.50	1	
4-Chloroaniline	ND	0.50	1		Naphthalene			ND	0.50	1	
2-Chloronaphthalene	ND	0.50	1		4-Nitroaniline			ND	0.50	1	
2-Chlorophenol	ND	0.50	1		3-Nitroaniline			ND	0.50	1	
4-Chlorophenyl-Phenyl Ether	ND	0.50	1		2-Nitroaniline			ND	0.50	1	
Chrysene	ND	0.50	1		Nitrobenzene			ND	2.5	1	
Di-n-Butyl Phthalate	ND	0.50	1		4-Nitrophenol			ND	0.50	1	
Di-n-Octyl Phthalate	ND	0.50	1		2-Nitrophenol			ND	0.50	1	
Dibenz (a,h) Anthracene	ND	0.50	1		Pentachloroph	enol		ND	2.5	1	
Dibenzofuran	ND	0.50	1		Phenanthrene			ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Phenol			ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Pyrene			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Pyridine			ND	0.50	1	
3,3'-Dichlorobenzidine	ND	10	1		1,2,4-Trichloro	benzene		ND	0.50	1	
2,4-Dichlorophenol	ND	0.50	1		2,4,6-Trichloro	phenol		ND	0.50	1	
Diethyl Phthalate	ND	0.50	1		2,4,5-Trichloro	phenol		ND	0.50	1	
Dimethyl Phthalate	ND	0.50	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	Qual
2-Fluorobiphenyl	79	38-134			2-Fluorophenol	l		79	42-120		
Nitrobenzene-d5	82	42-150			p-Terphenyl-d1	4		88	35-167		
Phenol-d6	89	46-118			2.4.6-Tribromo	phenol		57	36-132		
					, .,						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 23 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 1 of 10

Project: Tire Fire Property

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed		QC Batch ID
Tire-Fire-1-0.0'-0.1'			13-04-0823-1-G		04/09/13 11:00	Solid	GC/MS W	04/09/13	04/17/13 14:20		130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	65	1.3		c-1,3-Dichloro	propene		ND	1.3	1.3	
Benzene	ND	1.3	1.3		t-1,3-Dichlorop	propene		ND	2.6	1.3	
Bromobenzene	ND	1.3	1.3		Ethylbenzene			ND	1.3	1.3	
Bromochloromethane	ND	2.6	1.3		2-Hexanone			ND	26	1.3	
Bromodichloromethane	ND	1.3	1.3		Isopropylbenze	ene		ND	1.3	1.3	
Bromoform	ND	6.5	1.3		p-Isopropyltolu	iene		ND	1.3	1.3	
Bromomethane	ND	26	1.3		Methylene Chl	oride		ND	13	1.3	
2-Butanone	ND	26	1.3		4-Methyl-2-Pe	ntanone		ND	26	1.3	
n-Butylbenzene	ND	1.3	1.3		Naphthalene			ND	13	1.3	
sec-Butylbenzene	ND	1.3	1.3		n-Propylbenze	ne		ND	2.6	1.3	
tert-Butylbenzene	ND	1.3	1.3		Styrene			ND	1.3	1.3	
Carbon Disulfide	ND	13	1.3		1,1,1,2-Tetrac	hloroethane		ND	1.3	1.3	
Carbon Tetrachloride	ND	1.3	1.3		1,1,2,2-Tetrac	hloroethane		ND	2.6	1.3	
Chlorobenzene	ND	1.3	1.3		Tetrachloroeth	ene		ND	1.3	1.3	
Chloroethane	ND	2.6	1.3		Toluene			ND	1.3	1.3	
Chloroform	ND	1.3	1.3		1,2,3-Trichloro	benzene		ND	2.6	1.3	
Chloromethane	ND	26	1.3		1,2,4-Trichlord	benzene		ND	2.6	1.3	
2-Chlorotoluene	ND	1.3	1.3		1,1,1-Trichloro	bethane		ND	1.3	1.3	
4-Chlorotoluene	ND	1.3	1.3		1,1,2-Trichlord	bethane		ND	1.3	1.3	
Dibromochloromethane	ND	2.6	1.3		1,1,2-Trichlord	o-1,2,2-Triflu	oroethane	ND	13	1.3	
1,2-Dibromo-3-Chloropropane	ND	6.5	1.3		Trichloroethen	е		ND	2.6	1.3	
1,2-Dibromoethane	ND	1.3	1.3		Trichlorofluoro	methane		ND	13	1.3	
Dibromomethane	ND	1.3	1.3		1,2,3-Trichloro	propane		ND	2.6	1.3	
1,2-Dichlorobenzene	ND	1.3	1.3		1,2,4-Trimethy	lbenzene		ND	2.6	1.3	
1,3-Dichlorobenzene	ND	1.3	1.3		1,3,5-Trimethy	lbenzene		ND	2.6	1.3	
1,4-Dichlorobenzene	ND	1.3	1.3		Vinyl Acetate			ND	13	1.3	
Dichlorodifluoromethane	ND	2.6	1.3		Vinyl Chloride			ND	1.3	1.3	
1,1-Dichloroethane	ND	1.3	1.3		p/m-Xylene			ND	2.6	1.3	
1,2-Dichloroethane	ND	1.3	1.3		o-Xylene			ND	1.3	1.3	
1,1-Dichloroethene	ND	1.3	1.3		Methyl-t-Butyl	Ether (MTB	E)	ND	2.6	1.3	
c-1,2-Dichloroethene	ND	1.3	1.3		Tert-Butyl Alco	ohol (TBA)		ND	26	1.3	
t-1,2-Dichloroethene	ND	1.3	1.3		Diisopropyl Etl	her (DIPE)		ND	1.3	1.3	
1,2-Dichloropropane	ND	1.3	1.3		Ethyl-t-Butyl E	ther (ETBE))	ND	1.3	1.3	
1,3-Dichloropropane	ND	1.3	1.3		Tert-Amyl-Met	hyl Ether (T	AME)	ND	1.3	1.3	
2,2-Dichloropropane	ND	6.5	1.3		Ethanol			ND	650	1.3	
1,1-Dichloropropene	ND	2.6	1.3								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>al</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	<u>)ual</u>
1,4-Bromofluorobenzene	87	80-120			Dibromofluoro	methane		105	79-133		
1,2-Dichloroethane-d4	114	71-155			Toluene-d8			98	80-120		

DF - Dilution Factor

Qual - Qualifiers

MM

Page 24 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 2 of 10

Project: Tire Fire Property

Client Sample Number			Lat N	o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime :ed	QC Batch ID
Tire-Fire-1-0.5'-0.6'			13-04-0	823-2-C	04/09/13 11:20	Solid	GC/MS W	04/09/13	04/17/ 16:3	13 2	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	42	0.833		c-1,3-Dichloro	propene		ND	0.83	0.83	3
Benzene	ND	0.83	0.833		t-1,3-Dichlorop	oropene		ND	1.7	0.83	3
Bromobenzene	ND	0.83	0.833		Ethylbenzene			ND	0.83	0.83	3
Bromochloromethane	ND	1.7	0.833		2-Hexanone			ND	17	0.83	3
Bromodichloromethane	ND	0.83	0.833		Isopropylbenze	ene		ND	0.83	0.83	3
Bromoform	ND	4.2	0.833		p-Isopropyltolu	ene		ND	0.83	0.83	3
Bromomethane	ND	17	0.833		Methylene Chl	oride		ND	8.3	0.83	3
2-Butanone	ND	17	0.833		4-Methyl-2-Per	ntanone		ND	17	0.83	3
n-Butylbenzene	ND	0.83	0.833		Naphthalene			ND	8.3	0.83	3
sec-Butylbenzene	ND	0.83	0.833		n-Propylbenze	ne		ND	1.7	0.83	3
tert-Butylbenzene	ND	0.83	0.833		Styrene			ND	0.83	0.83	3
Carbon Disulfide	ND	8.3	0.833		1,1,1,2-Tetracl	hloroethane		ND	0.83	0.83	3
Carbon Tetrachloride	ND	0.83	0.833		1,1,2,2-Tetracl	hloroethane		ND	1.7	0.83	3
Chlorobenzene	ND	0.83	0.833		Tetrachloroeth	ene		ND	0.83	0.83	3
Chloroethane	ND	1.7	0.833		Toluene			ND	0.83	0.83	3
Chloroform	ND	0.83	0.833		1,2,3-Trichloro	benzene		ND	1.7	0.83	3
Chloromethane	ND	17	0.833		1,2,4-Trichloro	benzene		ND	1.7	0.83	3
2-Chlorotoluene	ND	0.83	0.833		1,1,1-Trichloro	ethane		ND	0.83	0.83	3
4-Chlorotoluene	ND	0.83	0.833		1,1,2-Trichloro	ethane		ND	0.83	0.83	3
Dibromochloromethane	ND	1.7	0.833		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	8.3	0.83	3
1,2-Dibromo-3-Chloropropane	ND	4.2	0.833		Trichloroethen	е		ND	1.7	0.83	3
1,2-Dibromoethane	ND	0.83	0.833		Trichlorofluoro	methane		ND	8.3	0.83	3
Dibromomethane	ND	0.83	0.833		1,2,3-Trichloro	propane		ND	1.7	0.83	3
1,2-Dichlorobenzene	ND	0.83	0.833		1,2,4-Trimethy	lbenzene		ND	1.7	0.83	3
1,3-Dichlorobenzene	ND	0.83	0.833		1,3,5-Trimethy	lbenzene		ND	1.7	0.83	3
1,4-Dichlorobenzene	ND	0.83	0.833		Vinyl Acetate			ND	8.3	0.83	3
Dichlorodifluoromethane	ND	1.7	0.833		Vinyl Chloride			ND	0.83	0.83	3
1,1-Dichloroethane	ND	0.83	0.833		p/m-Xylene			ND	1.7	0.83	3
1,2-Dichloroethane	ND	0.83	0.833		o-Xylene			ND	0.83	0.83	3
1,1-Dichloroethene	ND	0.83	0.833		Methyl-t-Butyl	Ether (MTB	E)	ND	1.7	0.83	3
c-1,2-Dichloroethene	ND	0.83	0.833		Tert-Butyl Alco	hol (TBA)		ND	17	0.83	3
t-1,2-Dichloroethene	ND	0.83	0.833		Diisopropyl Eth	ner (DIPE)		ND	0.83	0.83	3
1,2-Dichloropropane	ND	0.83	0.833		Ethyl-t-Butyl Ethyl	ther (ETBE)		ND	0.83	0.83	3
1,3-Dichloropropane	ND	0.83	0.833		Tert-Amyl-Met	hyl Ether (T.	AME)	ND	0.83	0.83	3
2,2-Dichloropropane	ND	4.2	0.833		Ethanol			ND	420	0.83	3
1,1-Dichloropropene	ND	1.7	0.833								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	96	80-120			Dibromofluoror	methane		106	79-133		
1,2-Dichloroethane-d4	120	71-155			Toluene-d8			99	80-120		

hM

ACCRED,

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 3 of 10

Project: Tire Fire Property

Client Sample Number			Lat N	o Sample Iumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime zed	QC Batch ID
Tire-Fire-2-0.0'-0.1'			13-04-0	823-3-C	04/09/13 12:10	Solid	GC/MS W	04/09/13	04/17/13 17:01		130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	67	42	0.839		c-1,3-Dichlorop	propene		ND	0.84	0.83	9
Benzene	ND	0.84	0.839		t-1,3-Dichlorop	ropene		ND	1.7	0.83	9
Bromobenzene	ND	0.84	0.839		Ethylbenzene			ND	0.84	0.83	9
Bromochloromethane	ND	1.7	0.839		2-Hexanone			ND	17	0.83	9
Bromodichloromethane	ND	0.84	0.839		Isopropylbenze	ene		ND	0.84	0.83	9
Bromoform	ND	4.2	0.839		p-Isopropyltolu	ene		ND	0.84	0.83	9
Bromomethane	ND	17	0.839		Methylene Chlo	oride		ND	8.4	0.83	9
2-Butanone	ND	17	0.839		4-Methyl-2-Per	ntanone		ND	17	0.83	9
n-Butylbenzene	ND	0.84	0.839		Naphthalene			ND	8.4	0.83	9
sec-Butylbenzene	ND	0.84	0.839		n-Propylbenzer	ne		ND	1.7	0.83	9
tert-Butylbenzene	ND	0.84	0.839		Styrene			ND	0.84	0.83	9
Carbon Disulfide	ND	8.4	0.839		1,1,1,2-Tetrach	nloroethane		ND	0.84	0.83	9
Carbon Tetrachloride	ND	0.84	0.839		1,1,2,2-Tetrach	nloroethane		ND	1.7	0.83	9
Chlorobenzene	ND	0.84	0.839		Tetrachloroethe	ene		ND	0.84	0.83	9
Chloroethane	ND	1.7	0.839		Toluene			ND	0.84	0.83	9
Chloroform	ND	0.84	0.839		1,2,3-Trichloro	benzene		ND	1.7	0.83	9
Chloromethane	ND	17	0.839		1,2,4-Trichloro	benzene		ND	1.7	0.83	9
2-Chlorotoluene	ND	0.84	0.839		1,1,1-Trichloro	ethane		ND	0.84	0.83	9
4-Chlorotoluene	ND	0.84	0.839		1,1,2-Trichloro	ethane		ND	0.84	0.83	9
Dibromochloromethane	ND	1.7	0.839		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	8.4	0.83	9
1,2-Dibromo-3-Chloropropane	ND	4.2	0.839		Trichloroethene	Э		ND	1.7	0.83	9
1,2-Dibromoethane	ND	0.84	0.839		Trichlorofluoro	methane		ND	8.4	0.83	9
Dibromomethane	ND	0.84	0.839		1,2,3-Trichloro	propane		ND	1.7	0.83	9
1,2-Dichlorobenzene	ND	0.84	0.839		1,2,4-Trimethy	lbenzene		ND	1.7	0.83	9
1,3-Dichlorobenzene	ND	0.84	0.839		1,3,5-Trimethy	lbenzene		ND	1.7	0.83	9
1,4-Dichlorobenzene	ND	0.84	0.839		Vinyl Acetate			ND	8.4	0.83	9
Dichlorodifluoromethane	ND	1.7	0.839		Vinyl Chloride			ND	0.84	0.83	9
1,1-Dichloroethane	ND	0.84	0.839		p/m-Xylene			ND	1.7	0.83	9
1,2-Dichloroethane	ND	0.84	0.839		o-Xylene			ND	0.84	0.83	9
1,1-Dichloroethene	ND	0.84	0.839		Methyl-t-Butyl	Ether (MTB	E)	ND	1.7	0.83	9
c-1,2-Dichloroethene	ND	0.84	0.839		Tert-Butyl Alco	hol (TBA)		ND	17	0.83	9
t-1,2-Dichloroethene	ND	0.84	0.839		Diisopropyl Eth	er (DIPE)		ND	0.84	0.83	9
1,2-Dichloropropane	ND	0.84	0.839		Ethyl-t-Butyl Et	her (ETBE)		ND	0.84	0.83	9
1,3-Dichloropropane	ND	0.84	0.839		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.84	0.83	9
2,2-Dichloropropane	ND	4.2	0.839		Ethanol			ND	420	0.83	9
1,1-Dichloropropene	ND	1.7	0.839								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	98	80-120			Dibromofluoror	nethane		107	79-133		
1,2-Dichloroethane-d4	119	71-155			Toluene-d8			99	80-120		

RL - Reporting Limit ,

Qual - Qualifiers

Page 26 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 4 of 10

Project: Tire Fire Property

Client Sample Number			Lab N	o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime zed	QC Batch ID
Tire-Fire-2-0.5'-0.6'			13-04-0	823-4-C	04/09/13 12:20	Solid	GC/MS W	04/09/13	04/17/ 17:3	'13 1	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	47	0.947		c-1,3-Dichloro	propene		ND	0.95	0.94	17
Benzene	ND	0.95	0.947		t-1,3-Dichlorop	oropene		ND	1.9	0.94	7
Bromobenzene	ND	0.95	0.947		Ethylbenzene			ND	0.95	0.94	7
Bromochloromethane	ND	1.9	0.947		2-Hexanone			ND	19	0.94	7
Bromodichloromethane	ND	0.95	0.947		Isopropylbenze	ene		ND	0.95	0.94	17
Bromoform	ND	4.7	0.947		p-Isopropyltolu	ene		ND	0.95	0.94	7
Bromomethane	ND	19	0.947		Methylene Chl	oride		ND	9.5	0.94	17
2-Butanone	ND	19	0.947		4-Methyl-2-Per	ntanone		ND	19	0.94	7
n-Butylbenzene	ND	0.95	0.947		Naphthalene			ND	9.5	0.94	7
sec-Butylbenzene	ND	0.95	0.947		n-Propylbenze	ne		ND	1.9	0.94	7
tert-Butylbenzene	ND	0.95	0.947		Styrene			ND	0.95	0.94	7
Carbon Disulfide	ND	9.5	0.947		1,1,1,2-Tetracl	hloroethane		ND	0.95	0.94	7
Carbon Tetrachloride	ND	0.95	0.947		1,1,2,2-Tetracl	hloroethane		ND	1.9	0.94	7
Chlorobenzene	ND	0.95	0.947		Tetrachloroeth	ene		ND	0.95	0.94	7
Chloroethane	ND	1.9	0.947		Toluene			ND	0.95	0.94	7
Chloroform	ND	0.95	0.947		1,2,3-Trichloro	benzene		ND	1.9	0.94	7
Chloromethane	ND	19	0.947		1,2,4-Trichloro	benzene		ND	1.9	0.94	7
2-Chlorotoluene	ND	0.95	0.947		1,1,1-Trichloro	ethane		ND	0.95	0.94	7
4-Chlorotoluene	ND	0.95	0.947		1,1,2-Trichloro	ethane		ND	0.95	0.94	7
Dibromochloromethane	ND	1.9	0.947		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	9.5	0.94	17
1,2-Dibromo-3-Chloropropane	ND	4.7	0.947		Trichloroethen	е		ND	1.9	0.94	7
1,2-Dibromoethane	ND	0.95	0.947		Trichlorofluoro	methane		ND	9.5	0.94	7
Dibromomethane	ND	0.95	0.947		1,2,3-Trichloro	propane		ND	1.9	0.94	7
1,2-Dichlorobenzene	ND	0.95	0.947		1,2,4-Trimethy	lbenzene		ND	1.9	0.94	7
1,3-Dichlorobenzene	ND	0.95	0.947		1,3,5-Trimethy	lbenzene		ND	1.9	0.94	7
1,4-Dichlorobenzene	ND	0.95	0.947		Vinyl Acetate			ND	9.5	0.94	7
Dichlorodifluoromethane	ND	1.9	0.947		Vinyl Chloride			ND	0.95	0.94	7
1,1-Dichloroethane	ND	0.95	0.947		p/m-Xylene			ND	1.9	0.94	7
1,2-Dichloroethane	ND	0.95	0.947		o-Xylene			ND	0.95	0.94	7
1,1-Dichloroethene	ND	0.95	0.947		Methyl-t-Butyl	Ether (MTB	E)	ND	1.9	0.94	7
c-1,2-Dichloroethene	ND	0.95	0.947		Tert-Butyl Alco	hol (TBA)		ND	19	0.94	7
t-1,2-Dichloroethene	ND	0.95	0.947		Diisopropyl Eth	ner (DIPE)		ND	0.95	0.94	7
1,2-Dichloropropane	ND	0.95	0.947		Ethyl-t-Butyl Ethyl	ther (ETBE)		ND	0.95	0.94	17
1,3-Dichloropropane	ND	0.95	0.947		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.95	0.94	7
2,2-Dichloropropane	ND	4.7	0.947		Ethanol			ND	470	0.94	7
1,1-Dichloropropene	ND	1.9	0.947								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	ual
1,4-Bromofluorobenzene	98	80-120			Dibromofluoror	methane		105	79-133		
1,2-Dichloroethane-d4	120	71-155			Toluene-d8			99	80-120		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 27 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 5 of 10

Project: Tire Fire Property

Client Sample Number			Lat N	o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	'ime zed	QC Batch ID
Tire-Fire-3-0.0'-0.1'			13-04-0	823-5-C	04/09/13 11:35	Solid	GC/MS W	04/09/13	3 04/17/13 18:00		130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	150	45	0.898		c-1,3-Dichloro	propene		ND	0.90	0.89	98
Benzene	ND	0.90	0.898		t-1,3-Dichlorop	oropene		ND	1.8	0.89	98
Bromobenzene	ND	0.90	0.898		Ethylbenzene			ND	0.90	0.89	98
Bromochloromethane	ND	1.8	0.898		2-Hexanone			ND	18	0.89	98
Bromodichloromethane	ND	0.90	0.898		Isopropylbenze	ene		ND	0.90	0.89	98
Bromoform	ND	4.5	0.898		p-Isopropyltolu	ene		ND	0.90	0.89	98
Bromomethane	ND	18	0.898		Methylene Chl	oride		ND	9.0	0.89	98
2-Butanone	35	18	0.898		4-Methyl-2-Per	ntanone		ND	18	0.89	98
n-Butylbenzene	ND	0.90	0.898		Naphthalene			ND	9.0	0.89	98
sec-Butylbenzene	ND	0.90	0.898		n-Propylbenze	ne		ND	1.8	0.89	98
tert-Butylbenzene	ND	0.90	0.898		Styrene			ND	0.90	0.89	98
Carbon Disulfide	ND	9.0	0.898		1,1,1,2-Tetrac	hloroethane		ND	0.90	0.89	98
Carbon Tetrachloride	ND	0.90	0.898		1,1,2,2-Tetracl	hloroethane		ND	1.8	0.89	98
Chlorobenzene	ND	0.90	0.898		Tetrachloroeth	ene		ND	0.90	0.89	98
Chloroethane	ND	1.8	0.898		Toluene			ND	0.90	0.89	98
Chloroform	ND	0.90	0.898		1,2,3-Trichloro	benzene		ND	1.8	0.89	98
Chloromethane	ND	18	0.898		1,2,4-Trichloro	benzene		ND	1.8	0.89	98
2-Chlorotoluene	ND	0.90	0.898		1,1,1-Trichloro	ethane		ND	0.90	0.89	98
4-Chlorotoluene	ND	0.90	0.898		1,1,2-Trichloro	ethane		ND	0.90	0.89	98
Dibromochloromethane	ND	1.8	0.898		1,1,2-Trichlord	-1,2,2-Triflu	oroethane	ND	9.0	0.89	98
1,2-Dibromo-3-Chloropropane	ND	4.5	0.898		Trichloroethen	е		ND	1.8	0.89	98
1,2-Dibromoethane	ND	0.90	0.898		Trichlorofluoro	methane		ND	9.0	0.89	98
Dibromomethane	ND	0.90	0.898		1,2,3-Trichloro	propane		ND	1.8	0.89	98
1,2-Dichlorobenzene	ND	0.90	0.898		1,2,4-Trimethy	lbenzene		ND	1.8	0.89	98
1,3-Dichlorobenzene	ND	0.90	0.898		1,3,5-Trimethy	lbenzene		ND	1.8	0.89	98
1,4-Dichlorobenzene	ND	0.90	0.898		Vinyl Acetate			ND	9.0	0.89	98
Dichlorodifluoromethane	ND	1.8	0.898		Vinyl Chloride			ND	0.90	0.89	98
1,1-Dichloroethane	ND	0.90	0.898		p/m-Xylene			ND	1.8	0.89	98
1,2-Dichloroethane	ND	0.90	0.898		o-Xylene			ND	0.90	0.89	98
1,1-Dichloroethene	ND	0.90	0.898		Methyl-t-Butyl	Ether (MTB	E)	ND	1.8	0.89	98
c-1,2-Dichloroethene	ND	0.90	0.898		Tert-Butyl Alco	hol (TBA)		ND	18	0.89	98
t-1,2-Dichloroethene	ND	0.90	0.898		Diisopropyl Eth	ner (DIPE)		ND	0.90	0.89	98
1,2-Dichloropropane	ND	0.90	0.898		Ethyl-t-Butyl E	ther (ETBE)		ND	0.90	0.89	98
1,3-Dichloropropane	ND	0.90	0.898		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.90	0.89	98
2,2-Dichloropropane	ND	4.5	0.898		Ethanol			ND	450	0.89	98
1,1-Dichloropropene	ND	1.8	0.898								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	lual
1,4-Bromofluorobenzene	94	80-120			Dibromofluoro	methane		105	79-133		
1,2-Dichloroethane-d4	117	71-155			Toluene-d8			97	80-120		

RL - Reporting Limit , DF - Dilution Factor ,

or , Qual - Qualifiers

Mulhan

Page 28 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 6 of 10

Project: Tire Fire Property

Client Sample Number			Lat N	o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz	ime :ed	QC Batch ID
Tire-Fire-3-0.5'-0.6'			13-04-0	823-6-C	04/09/13 11:45	Solid	GC/MS W	04/09/13	04/17/ 18:3	13 0	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	100	48	0.963		c-1,3-Dichlorop	propene		ND	0.96	0.96	3
Benzene	ND	0.96	0.963		t-1,3-Dichlorop	ropene		ND	1.9	0.96	3
Bromobenzene	ND	0.96	0.963		Ethylbenzene			ND	0.96	0.96	3
Bromochloromethane	ND	1.9	0.963		2-Hexanone			ND	19	0.96	3
Bromodichloromethane	ND	0.96	0.963		Isopropylbenze	ene		ND	0.96	0.96	3
Bromoform	ND	4.8	0.963		p-Isopropyltolu	ene		ND	0.96	0.96	3
Bromomethane	ND	19	0.963		Methylene Chlo	oride		ND	9.6	0.96	3
2-Butanone	ND	19	0.963		4-Methyl-2-Per	ntanone		ND	19	0.96	3
n-Butylbenzene	ND	0.96	0.963		Naphthalene			ND	9.6	0.96	3
sec-Butylbenzene	ND	0.96	0.963		n-Propylbenzer	ne		ND	1.9	0.96	3
tert-Butylbenzene	ND	0.96	0.963		Styrene			ND	0.96	0.96	3
Carbon Disulfide	ND	9.6	0.963		1,1,1,2-Tetrach	nloroethane		ND	0.96	0.96	3
Carbon Tetrachloride	ND	0.96	0.963		1,1,2,2-Tetrach	nloroethane		ND	1.9	0.96	3
Chlorobenzene	ND	0.96	0.963		Tetrachloroethe	ene		ND	0.96	0.96	3
Chloroethane	ND	1.9	0.963		Toluene			ND	0.96	0.96	3
Chloroform	ND	0.96	0.963		1,2,3-Trichloro	benzene		ND	1.9	0.96	3
Chloromethane	ND	19	0.963		1,2,4-Trichloro	benzene		ND	1.9	0.96	3
2-Chlorotoluene	ND	0.96	0.963		1,1,1-Trichloro	ethane		ND	0.96	0.96	3
4-Chlorotoluene	ND	0.96	0.963		1,1,2-Trichloro	ethane		ND	0.96	0.96	3
Dibromochloromethane	ND	1.9	0.963		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	9.6	0.96	3
1,2-Dibromo-3-Chloropropane	ND	4.8	0.963		Trichloroethene	Э		ND	1.9	0.96	3
1,2-Dibromoethane	ND	0.96	0.963		Trichlorofluoro	methane		ND	9.6	0.96	3
Dibromomethane	ND	0.96	0.963		1,2,3-Trichloro	propane		ND	1.9	0.96	3
1,2-Dichlorobenzene	ND	0.96	0.963		1,2,4-Trimethy	lbenzene		ND	1.9	0.96	3
1,3-Dichlorobenzene	ND	0.96	0.963		1,3,5-Trimethy	lbenzene		ND	1.9	0.96	3
1,4-Dichlorobenzene	ND	0.96	0.963		Vinyl Acetate			ND	9.6	0.96	3
Dichlorodifluoromethane	ND	1.9	0.963		Vinyl Chloride			ND	0.96	0.96	3
1,1-Dichloroethane	ND	0.96	0.963		p/m-Xylene			ND	1.9	0.96	3
1,2-Dichloroethane	ND	0.96	0.963		o-Xylene			ND	0.96	0.96	3
1,1-Dichloroethene	ND	0.96	0.963		Methyl-t-Butyl I	Ether (MTB	E)	ND	1.9	0.96	3
c-1,2-Dichloroethene	ND	0.96	0.963		Tert-Butyl Alco	hol (TBA)		ND	19	0.96	3
t-1,2-Dichloroethene	ND	0.96	0.963		Diisopropyl Eth	er (DIPE)		ND	0.96	0.96	3
1,2-Dichloropropane	ND	0.96	0.963		Ethyl-t-Butyl Et	her (ETBE)		ND	0.96	0.96	3
1,3-Dichloropropane	ND	0.96	0.963		Tert-Amyl-Meth	nyl Ether (T.	AME)	ND	0.96	0.96	3
2,2-Dichloropropane	ND	4.8	0.963		Ethanol			ND	480	0.96	3
1,1-Dichloropropene	ND	1.9	0.963								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	98	80-120			Dibromofluoror	nethane		106	79-133		
1,2-Dichloroethane-d4	122	71-155			Toluene-d8			99	80-120		

Qual - Qualifiers

RL - Reporting Limit , DF - Dilution Factor ,

Page 29 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 7 of 10

Project: Tire Fire Property

Client Sample Number			Lat N	o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime zed	QC Batch ID
Tire-Fire-4-0.0'-0.1'			13-04-0	823-7-C	04/09/13 12:00	Solid	GC/MS W	04/09/13	04/17/13 18:59		130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	110	44	0.87		c-1,3-Dichloro	propene		ND	0.87	0.87	,
Benzene	ND	0.87	0.87		t-1,3-Dichlorop	oropene		ND	1.7	0.87	,
Bromobenzene	ND	0.87	0.87		Ethylbenzene			ND	0.87	0.87	•
Bromochloromethane	ND	1.7	0.87		2-Hexanone			ND	17	0.87	,
Bromodichloromethane	ND	0.87	0.87		Isopropylbenze	ene		ND	0.87	0.87	,
Bromoform	ND	4.4	0.87		p-Isopropyltolu	lene		ND	0.87	0.87	,
Bromomethane	ND	17	0.87		Methylene Chl	oride		ND	8.7	0.87	•
2-Butanone	ND	17	0.87		4-Methyl-2-Pe	ntanone		ND	17	0.87	,
n-Butylbenzene	ND	0.87	0.87		Naphthalene			ND	8.7	0.87	•
sec-Butylbenzene	ND	0.87	0.87		n-Propylbenze	ene		ND	1.7	0.87	,
tert-Butylbenzene	ND	0.87	0.87		Styrene			ND	0.87	0.87	,
Carbon Disulfide	ND	8.7	0.87		1,1,1,2-Tetrac	hloroethane		ND	0.87	0.87	,
Carbon Tetrachloride	ND	0.87	0.87		1,1,2,2-Tetrac	hloroethane		ND	1.7	0.87	,
Chlorobenzene	ND	0.87	0.87		Tetrachloroeth	nene		ND	0.87	0.87	,
Chloroethane	ND	1.7	0.87		Toluene			ND	0.87	0.87	,
Chloroform	ND	0.87	0.87		1,2,3-Trichlord	obenzene		ND	1.7	0.87	,
Chloromethane	ND	17	0.87		1,2,4-Trichloro	obenzene		ND	1.7	0.87	,
2-Chlorotoluene	ND	0.87	0.87		1,1,1-Trichlord	bethane		ND	0.87	0.87	,
4-Chlorotoluene	ND	0.87	0.87		1,1,2-Trichloro	bethane		ND	0.87	0.87	,
Dibromochloromethane	ND	1.7	0.87		1,1,2-Trichlord	o-1,2,2-Triflu	loroethane	ND	8.7	0.87	,
1,2-Dibromo-3-Chloropropane	ND	4.4	0.87		Trichloroethen	e		ND	1.7	0.87	,
1,2-Dibromoethane	ND	0.87	0.87		Trichlorofluoro	omethane		ND	8.7	0.87	,
Dibromomethane	ND	0.87	0.87		1,2,3-Trichlord	opropane		ND	1.7	0.87	,
1,2-Dichlorobenzene	ND	0.87	0.87		1,2,4-Trimethy	/lbenzene		ND	1.7	0.87	,
1,3-Dichlorobenzene	ND	0.87	0.87		1,3,5-Trimethy	/lbenzene		ND	1.7	0.87	,
1,4-Dichlorobenzene	ND	0.87	0.87		Vinyl Acetate			ND	8.7	0.87	,
Dichlorodifluoromethane	ND	1.7	0.87		Vinyl Chloride			ND	0.87	0.87	,
1,1-Dichloroethane	ND	0.87	0.87		p/m-Xylene			ND	1.7	0.87	,
1,2-Dichloroethane	ND	0.87	0.87		o-Xylene			ND	0.87	0.87	,
1,1-Dichloroethene	ND	0.87	0.87		Methyl-t-Butyl	Ether (MTB	E)	ND	1.7	0.87	,
c-1,2-Dichloroethene	ND	0.87	0.87		Tert-Butyl Alco	ohol (TBA)		ND	17	0.87	,
t-1,2-Dichloroethene	ND	0.87	0.87		Diisopropyl Etl	her (DIPE)		ND	0.87	0.87	,
1,2-Dichloropropane	ND	0.87	0.87		Ethyl-t-Butyl E	ther (ETBE)	ND	0.87	0.87	,
1,3-Dichloropropane	ND	0.87	0.87		Tert-Amyl-Met	thyl Ether (T	AME)	ND	0.87	0.87	,
2,2-Dichloropropane	ND	4.4	0.87		Ethanol			ND	440	0.87	,
1,1-Dichloropropene	ND	1.7	0.87								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	96	80-120			Dibromofluoro	methane		107	79-133		
1,2-Dichloroethane-d4	121	71-155			Toluene-d8			99	80-120		

Page 30 of 63 IN ACCORDA 0

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 8 of 10

Project: Tire Fire Property

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	e Date/Time ed Analyzed C		QC Batch ID
Tire-Fire-4-0.5'-0.6'			13-04-0	823-8-C	04/09/13 12:05	Solid	GC/MS W	04/09/13	04/17/ 19:2	'13 9	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	52	44	0.877		c-1,3-Dichloro	propene		ND	0.88	0.87	77
Benzene	ND	0.88	0.877		t-1,3-Dichlorop	oropene		ND	1.8	0.87	77
Bromobenzene	ND	0.88	0.877		Ethylbenzene			ND	0.88	0.87	7
Bromochloromethane	ND	1.8	0.877		2-Hexanone			ND	18	0.87	7
Bromodichloromethane	ND	0.88	0.877		Isopropylbenze	ene		ND	0.88	0.87	77
Bromoform	ND	4.4	0.877		p-Isopropyltolu	ene		ND	0.88	0.87	7
Bromomethane	ND	18	0.877		Methylene Chl	oride		ND	8.8	0.87	77
2-Butanone	ND	18	0.877		4-Methyl-2-Per	ntanone		ND	18	0.87	7
n-Butylbenzene	ND	0.88	0.877		Naphthalene			ND	8.8	0.87	7
sec-Butylbenzene	ND	0.88	0.877		n-Propylbenze	ne		ND	1.8	0.87	77
tert-Butylbenzene	ND	0.88	0.877		Styrene			ND	0.88	0.87	7
Carbon Disulfide	ND	8.8	0.877		1,1,1,2-Tetracl	hloroethane		ND	0.88	0.87	77
Carbon Tetrachloride	ND	0.88	0.877		1,1,2,2-Tetracl	hloroethane		ND	1.8	0.87	77
Chlorobenzene	ND	0.88	0.877		Tetrachloroeth	ene		ND	0.88	0.87	77
Chloroethane	ND	1.8	0.877		Toluene			ND	0.88	0.87	77
Chloroform	ND	0.88	0.877		1,2,3-Trichlorobenzene			ND	1.8	0.87	77
Chloromethane	ND	18	0.877		1,2,4-Trichlorobenzene		ND	1.8	0.87	77	
2-Chlorotoluene	ND	0.88	0.877		1,1,1-Trichloro	ethane		ND	0.88	0.87	77
4-Chlorotoluene	ND	0.88	0.877		1,1,2-Trichloro	ethane		ND	0.88	0.87	77
Dibromochloromethane	ND	1.8	0.877		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	8.8	0.87	77
1,2-Dibromo-3-Chloropropane	ND	4.4	0.877		Trichloroethen	е		ND	1.8	0.87	77
1,2-Dibromoethane	ND	0.88	0.877		Trichlorofluoro	methane		ND	8.8	0.87	7
Dibromomethane	ND	0.88	0.877		1,2,3-Trichloro	propane		ND	1.8	0.87	77
1,2-Dichlorobenzene	ND	0.88	0.877		1,2,4-Trimethy	lbenzene		ND	1.8	0.87	7
1,3-Dichlorobenzene	ND	0.88	0.877		1,3,5-Trimethy	lbenzene		ND	1.8	0.87	77
1,4-Dichlorobenzene	ND	0.88	0.877		Vinyl Acetate			ND	8.8	0.87	7
Dichlorodifluoromethane	ND	1.8	0.877		Vinyl Chloride			ND	0.88	0.87	77
1,1-Dichloroethane	ND	0.88	0.877		p/m-Xylene			ND	1.8	0.87	7
1,2-Dichloroethane	ND	0.88	0.877		o-Xylene			ND	0.88	0.87	77
1,1-Dichloroethene	ND	0.88	0.877		Methyl-t-Butyl	Ether (MTB	E)	ND	1.8	0.87	77
c-1,2-Dichloroethene	ND	0.88	0.877		Tert-Butyl Alco	hol (TBA)		ND	18	0.87	77
t-1,2-Dichloroethene	ND	0.88	0.877		Diisopropyl Eth	ner (DIPE)		ND	0.88	0.87	77
1,2-Dichloropropane	ND	0.88	0.877		Ethyl-t-Butyl E	ther (ETBE))	ND	0.88	0.87	77
1,3-Dichloropropane	ND	0.88	0.877		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.88	0.87	77
2,2-Dichloropropane	ND	4.4	0.877		Ethanol			ND	440	0.87	77
1,1-Dichloropropene	ND	1.8	0.877								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	tual
1,4-Bromofluorobenzene	97	80-120			Dibromofluoro	methane		107	79-133		
1,2-Dichloroethane-d4	122	71-155			Toluene-d8			99	80-120		

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 $\,\cdot\,\,$ TEL:(714) 895-5494 $\,\cdot\,\,$ FAX: (714) 894-7501

Page 31 of 63 IN ACCORDA 0

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg
	Page 9 of 10

Project: Tire Fire Property

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime zed	QC Batch ID
Tire-Fire-5-0.0'-0.1'			13-04-0	823-9-C	04/09/13 11:30	Solid	GC/MS W	04/09/13	04/17/ 19:5	/13 8	130417L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	160	47	0.942		c-1,3-Dichlorop	propene		ND	0.94	0.94	2
Benzene	2.7	0.94	0.942		t-1,3-Dichlorop	ropene		ND	1.9	0.94	2
Bromobenzene	ND	0.94	0.942		Ethylbenzene			ND	0.94	0.94	2
Bromochloromethane	ND	1.9	0.942		2-Hexanone			ND	19	0.94	2
Bromodichloromethane	ND	0.94	0.942		Isopropylbenze	ne		ND	0.94	0.94	2
Bromoform	ND	4.7	0.942		p-Isopropyltolu	ene		ND	0.94	0.94	2
Bromomethane	ND	19	0.942		Methylene Chlo	oride		ND	9.4	0.94	2
2-Butanone	26	19	0.942		4-Methyl-2-Per	ntanone		ND	19	0.94	2
n-Butylbenzene	ND	0.94	0.942		Naphthalene			ND	9.4	0.94	2
sec-Butylbenzene	ND	0.94	0.942		n-Propylbenzer	ne		ND	1.9	0.94	2
tert-Butylbenzene	ND	0.94	0.942		Styrene			ND	0.94	0.94	2
Carbon Disulfide	ND	9.4	0.942		1,1,1,2-Tetrach	nloroethane		ND	0.94	0.94	2
Carbon Tetrachloride	ND	0.94	0.942		1,1,2,2-Tetrach	nloroethane		ND	1.9	0.94	2
Chlorobenzene	ND	0.94	0.942		Tetrachloroethe	ene		ND	0.94	0.94	2
Chloroethane	ND	1.9	0.942		Toluene			1.8	0.94	0.94	2
Chloroform	ND	0.94	0.942		1,2,3-Trichloro	benzene		ND	1.9	0.94	2
Chloromethane	ND	19	0.942		1,2,4-Trichloro	benzene		ND	1.9	0.94	2
2-Chlorotoluene	ND	0.94	0.942		1,1,1-Trichloro	ethane		ND	0.94	0.94	2
4-Chlorotoluene	ND	0.94	0.942		1,1,2-Trichloro	ethane		ND	0.94	0.94	2
Dibromochloromethane	ND	1.9	0.942		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	9.4	0.94	2
1,2-Dibromo-3-Chloropropane	ND	4.7	0.942		Trichloroethene	Э		ND	1.9	0.94	2
1,2-Dibromoethane	ND	0.94	0.942		Trichlorofluoror	methane		ND	9.4	0.94	2
Dibromomethane	ND	0.94	0.942		1,2,3-Trichloro	propane		ND	1.9	0.94	2
1,2-Dichlorobenzene	ND	0.94	0.942		1,2,4-Trimethyl	benzene		ND	1.9	0.94	2
1,3-Dichlorobenzene	ND	0.94	0.942		1,3,5-Trimethyl	benzene		ND	1.9	0.94	2
1,4-Dichlorobenzene	ND	0.94	0.942		Vinyl Acetate			ND	9.4	0.94	2
Dichlorodifluoromethane	ND	1.9	0.942		Vinyl Chloride			ND	0.94	0.94	2
1,1-Dichloroethane	ND	0.94	0.942		p/m-Xylene			ND	1.9	0.94	2
1,2-Dichloroethane	ND	0.94	0.942		o-Xylene			ND	0.94	0.94	2
1,1-Dichloroethene	ND	0.94	0.942		Methyl-t-Butyl	Ether (MTB	E)	ND	1.9	0.94	2
c-1,2-Dichloroethene	ND	0.94	0.942		Tert-Butyl Alco	hol (TBA)		ND	19	0.94	2
t-1,2-Dichloroethene	ND	0.94	0.942		Diisopropyl Eth	er (DIPE)		ND	0.94	0.94	2
1,2-Dichloropropane	ND	0.94	0.942		Ethyl-t-Butyl Et	her (ETBE)		ND	0.94	0.94	2
1,3-Dichloropropane	ND	0.94	0.942		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.94	0.94	2
2,2-Dichloropropane	ND	4.7	0.942		Ethanol			ND	470	0.94	2
1,1-Dichloropropene	ND	1.9	0.942								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	96	80-120			Dibromofluoror	nethane		105	79-133		
1,2-Dichloroethane-d4	119	71-155			Toluene-d8			99	80-120		

RL - Reporting Limit , DF - Dilution Factor

MM

Analytical Report

Page 32 of 63

Page 10 of 10

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B
Units:	ug/kg

Project: Tire Fire Property

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	Гime zed	QC Batch ID
Method Blank			095	-01-025-23,74	8 N/A	Solid	GC/MS W	04/17/13	04/17/13 13:51		130417L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	Qual
Acetone	ND	50	1		c-1,3-Dichlord	propene		ND	1.0	1	
Benzene	ND	1.0	1		t-1,3-Dichloro	propene		ND	2.0	1	
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	1.0	1	
Bromochloromethane	ND	2.0	1		2-Hexanone			ND	20	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1	
Bromoform	ND	5.0	1		p-Isopropyltolu	lene		ND	1.0	1	
Bromomethane	ND	20	1		Methylene Ch	loride		ND	10	1	
2-Butanone	ND	20	1		4-Methyl-2-Pe	ntanone		ND	20	1	
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	ND	1.0	1		n-Propylbenze	ene		ND	2.0	1	
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac	hloroethane		ND	1.0	1	
Carbon Tetrachloride	ND	1.0	1		1,1,2,2-Tetrac	hloroethane		ND	2.0	1	
Chlorobenzene	ND	1.0	1		Tetrachloroeth	nene		ND	1.0	1	
Chloroethane	ND	2.0	1		Toluene			ND	1.0	1	
Chloroform	ND	1.0	1		1,2,3-Trichlor	ND	2.0	1			
Chloromethane	ND	20	1		1,2,4-Trichlor	ND	2.0	1			
2-Chlorotoluene	ND	1.0	1		1,1,1-Trichlor	oethane		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor	oethane		ND	1.0	1	
Dibromochloromethane	ND	2.0	1		1,1,2-Trichlor	o-1,2,2-Triflu	loroethane	ND	10	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroether	ne		ND	2.0	1	
1,2-Dibromoethane	ND	1.0	1		Trichlorofluoro	omethane		ND	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor	opropane		ND	2.0	1	
1,2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimethy	ylbenzene		ND	2.0	1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimethy	ylbenzene		ND	2.0	1	
1,4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND	10	1	
Dichlorodifluoromethane	ND	2.0	1		Vinyl Chloride			ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	2.0	1	
1,2-Dichloroethane	ND	1.0	1		o-Xylene			ND	1.0	1	
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Butyl	Ether (MTB	E)	ND	2.0	1	
c-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Alc	ohol (TBA)		ND	20	1	
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl Et	her (DIPE)		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl E	ther (ETBE)	ND	1.0	1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	1.0	1	
2,2-Dichloropropane	ND	5.0	1		Ethanol			ND	500	1	
1,1-Dichloropropene	ND	2.0	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>(</u>	Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>		Qual
1,4-Bromofluorobenzene	95	80-120			Dibromofluoro	methane		101	79-133		
1,2-Dichloroethane-d4	104	71-155			Toluene-d8			97	80-120		

RL - Reporting Limit , DF - Dilution Factor ,

MM

Analytical Report

Freshwater Environmental Services Date Received:									04/11/13			
78 Sunny Br	ae Center				Work O	rder No):		13-0	4-0823		
Arcata, CA 9	5521-6742				Prepara	tion:			EPA	3050B		
					Method			FPA 6020				
					Linits:					ma/ka		
Project: Tire					ernte.				Dogo			
Flojeci. The	File Flopelty								Page			
Client Sample Nur	nber		Lab San Numb	Lab Sample Number		Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Tire-Fire-1-0.0'-0.1'		13-04-08	323-1-D	04/09/13 11:00	Solid	ICP/MS 03	04/12/13	04/15/13 18:46	130412L01			
Parameter	Result	RI	DF	Qual	Parameter		Result	RI	DF	Qual		
Antimony	ND	2.00	1	<u>Quui</u>	Nickel		32.4	1.00	1			
Arsenic	1.01	1.00	1		Selenium		ND	1.00	1			
Barium	31.4	1.00	1		Silver		ND	1.00	1			
Bervllium	ND	1.00	1		Thallium		ND	1.00	1			
Cadmium	ND	1.00	1		Vanadium		24.5	2.00	1			
Chromium	27.1	2.00	1		Zinc		1440	5.00	1			
Cobalt	19.4	1.00	1		Aluminum		7920	25.0	1			
Copper	82.1	1.00	1		Magnesium		8210	25.0	1			
Lead	30.0	1.00	1		Manganese		349	2.50	1			
Molybdenum	ND	1.00	1		-							
Tire-Fire-1-0.5'	-0.6'		13-04-08	323-2-B	04/09/13 11:20	Solid	ICP/MS 03	04/12/13	04/15/13 18:49	130412L01		
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter		<u>Result</u>	<u>RL</u>	DF	Qual		
Antimony	ND	2.00	1		Nickel		27.7	1.00	1			
Arsenic	ND	1.00	1		Selenium		ND	1.00	1			
Barium	9.63	1.00	1		Silver		ND	1.00	1			
Beryllium	ND	1.00	1		Thallium		ND	1.00	1			
Cadmium	ND	1.00	1		Vanadium		27.1	2.00	1			
Chromium	31.8	2.00	1		Zinc		72.9	5.00	1			
Cobalt	12.4	1.00	1		Aluminum		8810	25.0	1			
Copper	146	1.00	1		Manganese		604	2.50	1			
Lead	ND	1.00	1		Molybdenum	1	ND	1.00	1			
Tire-Fire-1-0.5'	-0.6'		13-04-08	323-2-B	04/09/13 11:20	Solid	ICP/MS 03	04/12/13	04/19/13 16:04	130412L01		
Parameter	Result	RL	DF	Qual								
Magnesium	8990	25.0	1									

Page 34 of 63

nelac

Freshwater Environmental Services Date Received:								04/11/13			
78 Sunny Br	ae Center				Work O	rder No):		13-0	4-0823	
Arcata, CA 9	95521-6742				Prepara	tion:			EPA	3050B	
,					Method:				FP	A 6020	
					Linite:					ma/ka	
Project: Tire	Fire Property				Offito.				Page	2 of 6	
					Data /Time			Data	T dyt	52010	
Client Sample Nur	mber		Lab Sam Numbe	ipie er	Collected	Matrix	Instrument	Date Prepared	Analyzed	QC Batch ID	
Tire-Fire-2-0.0	-0.1'		13-04-08	323-3-B	04/09/13 12:10	Solid	ICP/MS 03	04/12/13	04/15/13 18:52	130412L01	
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Parameter		Result	<u>RL</u>	DF	Qual	
Antimony	ND	2.00	1		Nickel		30.3	1.00	1		
Arsenic	1.04	1.00	1		Selenium		ND	1.00	1		
Barium	58.4	1.00	1		Silver		ND	1.00	1		
Beryllium	ND	1.00	1		Thallium		ND	1.00	1		
Cadmium	ND	1.00	1		Vanadium		24.7	2.00	1		
Chromium	24.5	2.00	1		Zinc		429	5.00	1		
Cobalt	10.5	1.00	1		Aluminum		9020	25.0	1		
Copper	102	1.00	1		Manganese		335	2.50	1		
Lead	19.9	1.00	1		Molybdenum	1	ND	1.00	1		
Tire-Fire-2-0.0	-0.1'		13-04-08	323-3-B	04/09/13 12:10	Solid	ICP/MS 03	04/12/13	04/19/13 16:06	130412L01	
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>							
Magnesium	7720	25.0	1								
Tire-Fire-2-0.5	-0.6'		13-04-08	323-4-B	04/09/13 12:20	Solid	ICP/MS 03	04/12/13	04/15/13 18:55	130412L01	
_											
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter		<u>Result</u>	<u>RL</u>	DF	Qual	
Antimony	ND	2.00	1		Nickel		28.3	1.00	1		
Arsenic	ND	1.00	1		Selenium		ND	1.00	1		
Barium	11.8	1.00	1		Silver		ND	1.00	1		
Beryllium	ND	1.00	1		Thallium		ND	1.00	1		
Cadmium	ND	1.00	1		Vanadium		32.5	2.00	1		
Chromium	28.1	2.00	1		Zinc		48.4	5.00	1		
Cobalt	13.8	1.00	1		Aluminum		9680	25.0	1		
Copper	181	1.00	1		Manganese		402	2.50	1		
Lead	1.03	1.00	1		Molybdenum	1	ND	1.00	1		
Tire-Fire-2-0.5	-0.6'		13-04-08	323-4-B	04/09/13 12:20	Solid	ICP/MS 03	04/12/13	04/19/13 16:08	130412L01	
Parameter	Result	RL	DF	Qual							

Magnesium

10800

25.0

1

RL - Reporting Limit , DF - Dilution Factor ,

or , Qual - Qualifiers

Mulum

04/11/13

13-04-0823

EPA 3050B

Page 3 of 6

EPA 6020

mg/kg

Analytical Report

Freshwater Environmental Services Date Received: 78 Sunny Brae Center Work Order No: Arcata, CA 95521-6742 Preparation: Method: Units: Project: Tire Fire Property Date /Time Lab Sample

Client Sample Number			Lab Sampl Number	е	Date /Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-3-0.0'-0.1'			13-04-0823	3-5-B	04/09/13 11:35	Solid	ICP/MS 03	04/12/13	04/15/13 18:58	130412L01
Parameter	Result	RI	DE	Qual	Parameter		Result	RI	DE	Qual
Antimony	<u>4 43</u>	2.00	1	<u>Quai</u>	<u>n arameter</u> Nickel		86.8	1.00	1	Quai
Arsenic	10.8	1.00	1		Selenium		ND	1.00	1	
Barium	109	1.00	1		Silver		ND	1.00	1	
Beryllium	ND	1.00	1		Thallium		ND	1.00	1	
Cadmium	1.91	1.00	1		Vanadium		26.1	2.00	1	
Chromium	44.0	2.00	1		Zinc		1270	5.00	1	
Cobalt	15.9	1.00	1		Aluminum		10800	25.0	1	
Copper	988	1.00	1		Manganese		341	2.50	1	
Lead	230	1.00	1		Molybdenum		ND	1.00	1	
Tire-Fire-3-0.0'-0.1'			13-04-0823	3-5-B	04/09/13 11:35	Solid	ICP/MS 03	04/12/13	04/19/13 16:10	130412L01

Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>						
Magnesium	10500	25.0	1							
Tire-Fire-3-0.5'-0.6'			13-04-0	823-6-B	04/09/13 11:45	Solid	ICP/MS 03	04/12/13	04/15/13 19:01	130412L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter		<u>Result</u>	<u>RL</u>	DF	Qual
Antimony	ND	2.00	1		Nickel		268	1.00	1	
Arsenic	2.20	1.00	1		Selenium		ND	1.00	1	
Barium	29.1	1.00	1		Silver		ND	1.00	1	
Beryllium	ND	1.00	1		Thallium		ND	1.00	1	
Cadmium	ND	1.00	1		Vanadium		33.1	2.00	1	
Chromium	51.1	2.00	1		Zinc		84.9	5.00	1	
Cobalt	22.0	1.00	1		Aluminum		8440	25.0	1	
Copper	70.3	1.00	1		Manganese		391	2.50	1	
Lead	14.0	1.00	1		Molybdenun	n	ND	1.00	1	
Tire-Fire-3-0.5'-0.6'			13-04-0	823-6-B	04/09/13 11:45	Solid	ICP/MS 03	04/12/13	04/19/13 16:12	130412L01
				. .						
Parameter	Result	RI	DF	Qual						

Magnesium

25.0

24100

1

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

n M

04/11/13

13-04-0823

EPA 3050B

Page 4 of 6

Date/Time

Analyzed

EPA 6020

mg/kg

QC Batch ID

Analytical Report

Freshwater Environmental Services Date Received: 78 Sunny Brae Center Work Order No: Arcata, CA 95521-6742 Preparation: Method: Units: Project: Tire Fire Property Lab Sample Date /Time Date Matrix Instrument Number Collected Prepared Client Sample Number

Tire-Fire-4-0.0'-0	.1'		13-04-0823-7	7-B	04/09/13 S 12:00	Solid	ICP/MS 03	04/12/13	04/15/13 19:04	130412L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter		Result	<u>RL</u>	<u>DF</u>	Qual
Antimony	ND	2.00	1		Nickel		64.8	1.00	1	
Arsenic	26.8	1.00	1		Selenium		ND	1.00	1	
Barium	329	1.00	1		Silver		ND	1.00	1	
Beryllium	ND	1.00	1		Thallium		ND	1.00	1	
Cadmium	2.58	1.00	1		Vanadium		28.6	2.00	1	
Chromium	52.6	2.00	1		Zinc		2830	5.00	1	
Cobalt	13.2	1.00	1		Aluminum		39700	25.0	1	
Copper	2430	1.00	1		Manganese		447	2.50	1	
Lead	74.4	1.00	1		Molybdenum		1.21	1.00	1	
Tire-Fire-4-0.0'-0	.1'		13-04-0823-7	7-В	04/09/13 S 12:00	Solid	ICP/MS 03	04/12/13	04/19/13 16:14	130412L01

Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>						
Magnesium	7590	25.0	1							
Tire-Fire-4-0.5'-0.6'			13-04-0	823-8-B	04/09/13 12:05	Solid	ICP/MS 03	04/12/13	04/15/13 19:13	130412L01
Parameter	<u>Result</u>	RL	DF	<u>Qual</u>	Parameter		Result	<u>RL</u>	<u>DF</u>	Qual
Antimony	ND	2.00	1		Nickel		95.9	1.00	1	
Arsenic	2.54	1.00	1		Selenium		ND	1.00	1	
Barium	37.5	1.00	1		Silver		ND	1.00	1	
Beryllium	ND	1.00	1		Thallium		ND	1.00	1	
Cadmium	ND	1.00	1		Vanadium		40.8	2.00	1	
Chromium	36.3	2.00	1		Zinc		185	5.00	1	
Cobalt	16.5	1.00	1		Aluminum		9830	25.0	1	
Copper	144	1.00	1		Manganese		412	2.50	1	
Lead	7.64	1.00	1		Molybdenur	n	ND	1.00	1	
Tire-Fire-4-0.5'-0.6'			13-04-0	823-8-B	04/09/13 12:05	Solid	ICP/MS 03	04/12/13	04/19/13 16:16	130412L01
Parameter	Result	RI	DF	Qual						

Magnesium

25.0

1 <u>Qu</u>

RL - Reporting Limit , DF - Dilution Factor

14300

or , Qual - Qualifiers

Analytical Report

Freshwater E	Environmental	Services			Date Re	eceived	:		0.	4/11/13	
78 Sunny Bra	ae Center				Work C	order No	D:		13-04-0823		
Arcata, CA 9	5521-6742				Prepara	ation:			EPA	3050B	
					Method	·			FP	A 6020	
					l Inite:	•				ma/ka	
					Units.				_	iiig/kg	
Project: Tire	Fire Property								Page	e 5 of 6	
Client Sample Nur	nber		Lab San Numb	nple er	Date /Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Tire-Fire-5-0.0'-	0.1'		13-04-08	823-9-B	04/09/13 11:30	Solid	ICP/MS 03	04/12/13	04/15/13 19:16	130412L01	
					_						
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter		Result	<u>RL</u>	DF	- Qual	
Antimony	ND	2.00	1		Nickel		29.1	1.00) 1		
Arsenic	ND	1.00	1		Selenium		ND	1.00	1		
Barium	28.2	1.00	1		Silver		ND	1.00) 1		
Beryllium	ND	1.00	1		Thallium		ND	1.00	1		
Cadmium	ND	1.00	1		Vanadium		20.4	2.00	1		
Chromium	24.6	2.00	1		Zinc		1950	5.00) 1		
Cobalt	23.7	1.00	1		Aluminum		6470	25.0	1		
Copper	97.3	1.00	1		Manganese)	311	2.50	1		
Lead	23.3	1.00	1		Molybdenur	m	ND	1.00) 1		
Tire-Fire-5-0.0'-	0.1'		13-04-08	823-9-B	04/09/13 11:30	Solid	ICP/MS 03	04/12/13	04/19/13 16:17	130412L01	
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>							
Magnesium	6620	25.0	1								

magneenam										
Tire-Fire-Back	ground-Metals-0.0'-(0.1'	13-04-082	23-10-B	04/09/13 12:35	Solid	ICP/MS 03	04/12/13	04/15/13 19:19	130412L01
Parameter er	Result	<u>RL</u>	DF	Qual	Parameter		Result	<u>RL</u>	DF	Qual
Antimony	ND	2.00	1		Nickel		52.8	1.00	1	
Arsenic	4.33	1.00	1		Selenium		ND	1.00	1	
Barium	122	1.00	1		Silver		ND	1.00	1	
Beryllium	ND	1.00	1		Thallium		ND	1.00	1	
Cadmium	ND	1.00	1		Vanadium		26.6	2.00	1	
Chromium	43.5	2.00	1		Zinc		60.6	5.00	1	
Cobalt	12.9	1.00	1		Aluminum		12300	25.0	1	
Copper	30.5	1.00	1		Manganese		538	2.50	1	
Lead	11.0	1.00	1		Molybdenur	n	ND	1.00	1	
Tire-Fire-Back	ground-Metals-0.0'-0	0.1'	13-04-082	23-10-B	04/09/13 12:35	Solid	ICP/MS 03	04/12/13	04/19/13 16:19	130412L01

Parameter <u>RL</u> DF Qual Result 25.0 7290 Magnesium 1

> RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

Freshwater E 78 Sunny Bra Arcata, CA 9	Freshwater Environmental Services Date Received: 78 Sunny Brae Center Work Order No: Arcata, CA 95521-6742 Preparation: Method: Units:						04 13-0 EPA EP	4/11/13 4-0823 3050B A 6020 mg/kg		
Project: The	File Ploperty		Lob Com		Data /Tima			Data	Page	e 6 0f 6
Client Sample Nur	mber		Lab San Numbe	er	Collected	Matrix	Instrument	Prepared	Analyzed	QC Batch ID
Method Blank			099-15-6	621-200	N/A	Solid	ICP/MS 03	04/12/13	04/12/13 20:45	130412L01
Parameter	Result	RI	DE	Qual	Parameter		Result	RI	DE	Qual
Antimony	ND	2.00	1	<u>Quui</u>	Nickel		ND	1.00	1	
Arsenic	ND	1.00	1		Selenium		ND	1.00	1	
Barium	ND	1.00	1		Silver		ND	1.00	1	
Beryllium	ND	1.00	1		Thallium		ND	1.00	1	
Cadmium	ND	1.00	1		Vanadium		ND	2.00	1	
Chromium	ND	2.00	1		Zinc		ND	5.00	1	
Cobalt	ND	1.00	1		Aluminum		ND	25.0	1	
Copper	ND	1.00	1		Magnesium		ND	25.0	1	
Lead	ND	1.00	1		Manganese		ND	2.50	1	
Molybdenum	ND	1.00	1							

MM

Sonelacia

Page 39 of 63

Freshwater Environmental S	Services		Date Rec	ceived:				04/11/13		
78 Sunny Brae Center	Work Order No: 13-04-0823									
Arcata, CA 95521-6742			Preparation: EPA 7471A							
		Method:				EF	PA 7471A			
Project: Tire Fire Property							Pa	age 1 of 2		
		Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID		
Tire-Fire-1-0 0'-0 1'		Number		Solid	Mercury	04/12/13	04/12/13	1304121 03		
		13-04-0623-1-D	11:00	oona	meroury	04/12/10	14:19	100412200		
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>					
Mercury	ND	0.0835	1		mg/kg					
Tire-Fire-1-0.5'-0.6'		13-04-0823-2-B	04/09/13 11:20	Solid	Mercury	04/12/13	04/12/13 14:30	130412L03		
Doromotor	Deput	DI	DE	Qual	Linita					
Parameter	<u>Result</u>	<u>RL</u> 0.0825		Qual	<u>Units</u>					
Mercury	ND	0.0635	I		nig/kg					
Tire-Fire-2-0.0'-0.1'		13-04-0823-3-B	04/09/13 12:10	Solid	Mercury	04/12/13	04/12/13 14:33	130412L03		
Parameter	Result	RL	DF	Qual	Units					
Mercury	ND	0.0835	1		mg/kg					
Tire-Fire-2-0.5'-0.6'		13-04-0823-4-B	04/09/13 12:20	Solid	Mercury	04/12/13	04/12/13 14:35	130412L03		
Deremeter	Rogult	DI	DE	Qual	Linita					
Moreury	ND	0.0835	<u>DF</u> 1	Quai	<u>onits</u> ma/ka					
Mercury	ND	0.0000	I		iiig/kg					
Tire-Fire-3-0.0'-0.1'		13-04-0823-5-B	04/09/13 11:35	Solid	Mercury	04/12/13	04/12/13 14:37	130412L03		
Parameter	Result	RL	DF	Qual	Units					
Mercury	ND	0.0835	1		mg/kg					
Tire-Fire-3-0.5'-0.6'		13-04-0823-6-B	04/09/13 11:45	Solid	Mercury	04/12/13	04/12/13 14:39	130412L03		
Parameter	<u>Re</u> sult	<u>RL</u>	DE	Qual	Units					
Mercury	ND	0.0835	1		mg/kg					

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM 7440 Lincoln Way

.

Page 40 of 63

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742 Date Received: Work Order No: Preparation: Method:

Page 2 of 2

04/11/13

13-04-0823

EPA 7471A

EPA 7471A Total

Project: Tire Fire Property

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-4-0.0'-0.1'		13-04-0823-7-В	04/09/13 12:00	Solid	Mercury	04/12/13	04/12/13 14:41	130412L03
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Mercury	ND	0.0835	1		mg/kg			
Tire-Fire-4-0.5'-0.6'		13-04-0823-8-B	04/09/13 12:05	Solid	Mercury	04/12/13	04/12/13 14:44	130412L03
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Mercury	ND	0.0835	1		mg/kg			
Tire-Fire-5-0.0'-0.1'		13-04-0823-9-B	04/09/13 11:30	Solid	Mercury	04/12/13	04/12/13 14:46	130412L03
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
Mercury	ND	0.0835	1		mg/kg			
Tire-Fire-Background-Metals-0.0'-0.1'		13-04-0823-10-В	04/09/13 12:35	Solid	Mercury	04/12/13	04/12/13 14:52	130412L03
Parameter	Result	RL	DF	Qual	Units			
Mercury	ND	0.0835	1		mg/kg			
Method Blank		099-04-007-9,225	N/A	Solid	Mercury	04/12/13	04/12/13 12:41	130412L03
Parameter	Result	RL	DF	Qual	Units			
Mercury	ND	0.0835	1		mg/kg			

Freshwater Environmental Services
78 Sunny Brae Center
Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3050B
Method:	EPA 6020

Quality Control Sample ID			Matrix	Ir	nstrument	D Pre)ate pared	Date Analyzed	MS/N N	ISD Batch umber
Tire-Fire-1-0.0'-0.1'			Solid	IC	CP/MS 03	04/1	12/13	04/12/13	130	412S01
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Antimony	ND	25.00	10.84	43	11.43	46	1-97	5	0-39	
Arsenic	1.013	25.00	25.61	98	25.65	99	72-132	0	0-13	
Barium	31.43	25.00	53.44	88	51.75	81	50-152	3	0-41	
Beryllium	ND	25.00	27.12	108	27.42	110	61-121	1	0-13	
Cadmium	ND	25.00	25.61	102	25.94	104	85-121	1	0-12	
Chromium	27.10	25.00	49.65	90	49.28	89	20-182	1	0-15	
Cobalt	19.40	25.00	41.47	88	42.58	93	40-166	3	0-14	
Copper	82.09	25.00	101.6	78	116.8	139	25-157	14	0-22	
Lead	29.96	25.00	54.54	98	50.38	82	62-134	8	0-23	
Molybdenum	ND	25.00	23.77	95	24.24	97	69-123	2	0-13	
Nickel	32.43	25.00	57.45	100	57.56	100	46-154	0	0-15	
Selenium	ND	25.00	25.03	100	25.27	101	54-132	1	0-14	
Silver	ND	12.50	35.62	285	30.84	247	78-126	14	0-15	3
Thallium	ND	25.00	24.67	99	25.36	101	79-115	3	0-11	
Vanadium	24.45	25.00	50.54	104	48.10	95	28-178	5	0-28	
Zinc	1441	25.00	1131	4X	1819	4X	23-173	4X	0-18	Q
Aluminum	7922	25.00	9230	4X	8462	4X	80-120	4X	0-20	Q
Magnesium	8209	25.00	8829	4X	8034	4X	80-120	4X	0-20	Q
Manganese	348.7	25.00	323.0	4X	329.4	4X	80-120	4X	0-20	Q

RPD - Relative Percent Difference, CL - Control Limit

MM

Freshwater Environmental Services	
78 Sunny Brae Center	
Arcata, CA 95521-6742	

Date Received	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 3050B
Method:	EPA 6020

Quality Control Sample ID Matrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number	
Tire-Fire-1-0.0'-0.1' Solid	ICP/MS 03	04/12/13	04/12/13	130412S01	
Analysis Comment: Mg was analyzed 04/19/2013 15:53:12	2.				
Parameter SAMPLE_CONC SP	KE_ADDED PDS_CONC	<u>PDS %REC</u>	<u>%REC CL</u>	Qualifiers	
Antimony ND	25.00 25.65	103	75-125		
Arsenic 1.013	25.00 25.59	98	75-125		
Barium 31.43	25.00 55.44	96	75-125		
Beryllium ND	25.00 26.82	107	75-125		
Cadmium ND	25.00 25.45	102	75-125		
Chromium 27.10	25.00 48.94	87	75-125		
Cobalt 19.40	25.00 42.24	91	75-125		
Copper 82.09	25.00 103.5	86	75-125		
Lead 29.96	25.00 54.03	96	75-125		
Molybdenum ND	25.00 23.62	94	75-125		
Nickel 32.43	25.00 55.25	91	75-125		
Selenium ND	25.00 25.33	101	75-125		
Silver ND	12.50 22.05	176	75-125	5	
Thallium ND	25.00 24.59	98	75-125		
Vanadium 24.45	25.00 48.34	96	75-125		
Zinc 1441	25.00 1439	4X	75-125	Q	
Aluminum 7922	25.00 8729	4X	75-125	Q	
Magnesium 8209	25.00 8070	4X	75-125	Q	
Manganese 348.7	25.00 366.7	4X	75-125	Q	

RPD - Relative Percent Difference, CL - Control Limit

hM

	ED IN	ACCOR	Da.
4	9 ¹¹ -	T.	Cm
ACCS	ne	a	

Freshwater Environmental Services	Date Received:	04/11/13
78 Sunny Brae Center	Work Order No:	13-04-0823
Arcata, CA 95521-6742	Preparation:	EPA 3550B
	Method:	EPA 8015B

Quality Control Sample ID		Matrix In		Date Strument Prepared		Date epared	Date Analyzed	MS/MSD Batch Number		
Tire-Fire-1-0.0'-0.1'			Solid	G	C 45	04/	12/13	04/18/13	1304	412S03A
Parameter	SAMPLE CONC	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Diesel Range Organics	24.95	400.0	602.3	144	595.8	143	64-130	1	0-15	3

RPD - Relative Percent Difference, CL - Control Limit

65	INACC	ORD,
- N	1	THC.
3		
00		

Freshwater Environmental Services	Date Received:	04/11/13
78 Sunny Brae Center	Work Order No:	13-04-0823
Arcata, CA 95521-6742	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Quality Control Sample ID		Matrix Instrument		nstrument	Date Prepared		Date Analyzed	MS/MSD Batch Number		
Tire-Fire-1-0.0'-0.1'			Solid	G	C 45	04/	12/13	04/18/13	1304	412S04A
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	MS CONC	MS <u>%REC</u>	MSD CONC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Motor Oil	86.41	400.0	491.9	101	581.9	124	64-130	17	0-15	4

RPD - Relative Percent Difference, CL - Control Limit

4116

Freshwater Environmental Services	Date Received:	04/11/13
78 Sunny Brae Center	Work Order No:	13-04-0823
Arcata, CA 95521-6742	Preparation:	EPA 5030C
	Method:	EPA 8015B

Quality Control Sample ID		Matrix		Ir	Instrument		Date Prepared		MS/MSD Batch Number	
Tire-Fire-1-0.0'-0.1'			Solid	G	C 22	04/	12/13	04/12/13	130	0412S01
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	MS CONC	<u>MS</u> <u>%REC</u>	MSD CONC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Gasoline Range Organics	ND	10.00	3.757	38	3.858	39	66-108	3	0-18	3

RPD - Relative Percent Difference, CL - Control Limit

	D IN ACCO	ROAL
CAEOL		A Can
AC		

Freshwater Environmental Services	Date Received:	04/11/13
78 Sunny Brae Center	Work Order No:	13-04-0823
Arcata, CA 95521-6742	Preparation:	EPA 7471A Total
	Method:	EPA 7471A

Quality Control Sample ID		Matrix		Instrument		Date Prepared		Date Analyzed	MS/MSD Batch Number	
Tire-Fire-1-0.0'-0.1'			Solid	М	ercury	04/*	12/13	04/12/13	130	412S03
<u>Parameter</u>	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Mercury	ND	0.8350	0.7386	88	0.7368	88	71-137	0	0-14	

RPD - Relative Percent Difference, CL - Control Limit

Freshwater Environmental Services
78 Sunny Brae Center
Arcata, CA 95521-6742

04/11/13
13-04-0823
EPA 3545
EPA 8270C

Quality Control Sample ID			Matrix Instrument		Date Prepared		Date Analyzed	MS/N N	ISD Batch umber	
Tire-Fire-1-0.0'-0.1'			Solid	G	GC/MS CCC	04/	12/13	04/15/13	130412S07	
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> <u>CONC</u>	<u>MS</u> <u>%REC</u>	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Acenaphthene	ND	10.00	8.816	88	8.386	84	49-133	5	0-18	
Acenaphthylene	ND	10.00	8.905	89	8.525	85	50-150	4	0-20	
Butyl Benzyl Phthalate	ND	10.00	9.259	93	8.832	88	50-150	5	0-20	
4-Chloro-3-Methylphenol	ND	10.00	9.291	93	8.752	88	50-128	6	0-17	
2-Chlorophenol	ND	10.00	8.937	89	9.373	94	57-111	5	0-17	
1,4-Dichlorobenzene	ND	10.00	7.485	75	8.721	87	49-127	15	0-20	
Dimethyl Phthalate	ND	10.00	9.613	96	9.114	91	50-150	5	0-20	
2,4-Dinitrotoluene	ND	10.00	9.625	96	8.724	87	50-128	10	0-18	
Fluorene	ND	10.00	9.389	94	8.913	89	50-150	5	0-20	
N-Nitroso-di-n-propylamine	ND	10.00	9.287	93	9.567	96	54-144	3	0-17	
Naphthalene	ND	10.00	7.824	78	8.176	82	50-150	4	0-20	
4-Nitrophenol	ND	10.00	8.769	88	7.138	71	30-144	21	0-21	
Pentachlorophenol	ND	10.00	7.545	75	5.854	59	29-113	25	0-22	4
Phenol	ND	10.00	9.096	91	9.382	94	57-123	3	0-16	
Pyrene	ND	10.00	8.333	83	7.697	77	47-149	8	0-20	
1,2,4-Trichlorobenzene	ND	10.00	7.548	75	8.037	80	42-132	6	0-20	

RPD - Relative Percent Difference, CL - Control Limit

hM

Freshwater Environmental Services
78 Sunny Brae Center
Arcata, CA 95521-6742

Date Received:	04/11/13
Work Order No:	13-04-0823
Preparation:	EPA 5035
Method:	EPA 8260B

Quality Control Sample ID			Matrix Instrument		Date Prepared		Date Analyzed	MS/N N	ISD Batch umber	
Tire-Fire-1-0.0'-0.1'			Solid	Solid GC/MS W		04/09/13		04/17/13	130	417S01
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	<u>MS</u> CONC	<u>MS</u> <u>%REC</u>	MSD CONC	MSD <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	ND	50.00	43.87	88	36.35	73	31-145	19	0-41	
Carbon Tetrachloride	ND	50.00	54.41	109	43.79	88	49-133	22	0-48	
Chlorobenzene	ND	50.00	46.94	94	33.75	68	54-126	33	0-50	
1,2-Dibromoethane	ND	50.00	46.04	92	38.47	77	57-153	18	0-39	
1,2-Dichlorobenzene	ND	50.00	52.41	105	27.02	54	38-128	64	0-62	4
1,2-Dichloroethane	ND	50.00	48.20	96	41.66	83	80-120	15	0-20	
1,1-Dichloroethene	ND	50.00	43.70	87	35.67	71	55-133	20	0-41	
Ethylbenzene	ND	50.00	50.96	102	34.33	69	32-146	39	0-61	
Toluene	ND	50.00	42.81	86	34.87	70	39-141	20	0-52	
Trichloroethene	ND	50.00	43.18	86	35.84	72	57-129	19	0-47	
Vinyl Chloride	ND	50.00	36.65	73	29.08	58	47-137	23	0-58	
p/m-Xylene	ND	100.0	102.8	103	69.61	70	70-130	39	0-30	4
o-Xylene	ND	50.00	51.22	102	35.04	70	70-130	38	0-30	4
Methyl-t-Butyl Ether (MTBE)	ND	50.00	51.17	102	42.80	86	61-145	18	0-33	
Tert-Butyl Alcohol (TBA)	ND	250.0	204.3	82	196.7	79	44-152	4	0-54	
Diisopropyl Ether (DIPE)	ND	50.00	46.55	93	38.65	77	59-137	19	0-36	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	51.55	103	42.99	86	56-140	18	0-36	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	48.46	97	40.30	81	57-141	18	0-35	
Ethanol	ND	500.0	335.4	67	341.6	68	8-170	2	0-77	

RPD - Relative Percent Difference, CL - Control Limit

hu

Date Received:N/AWork Order No:13-04-0823Preparation:EPA 3050BMethod:EPA 6020

Project: Tire Fire Property

Quality Control Sample ID	Matrix	Instrument	:	Date Prepared	D Ana	ate lyzed	LCS	/LCSD Batch Number	
099-15-621-200	Solid	ICP/MS 03		04/12/13	04/15	5/13	1	30412L01	
Parameter SF AD	IKE LCS DED CONC	LCS <u>%REC</u>	LCSD CONC	<u>LCSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>ME CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Antimony 25	.00 25.27	101	25.57	102	80-120	73-127	1	0-20	
Arsenic 25	.00 24.97	100	25.47	102	80-120	73-127	2	0-20	
Barium 25	.00 25.57	102	25.75	103	80-120	73-127	1	0-20	
Beryllium 25	.00 23.47	94	23.51	94	80-120	73-127	0	0-20	
Cadmium 25	.00 25.49	102	25.45	102	80-120	73-127	0	0-20	
Chromium 25	.00 24.79	99	25.00	100	80-120	73-127	1	0-20	
Cobalt 25	.00 25.34	101	25.35	101	80-120	73-127	0	0-20	
Copper 25	.00 26.83	107	26.78	107	80-120	73-127	0	0-20	
Lead 25	.00 24.66	99	24.80	99	80-120	73-127	1	0-20	
Molybdenum 25	.00 24.52	98	25.13	101	80-120	73-127	2	0-20	
Nickel 25	.00 25.69	103	25.59	102	80-120	73-127	0	0-20	
Selenium 25	.00 24.30	97	24.48	98	80-120	73-127	1	0-20	
Silver 12	.50 11.16	89	11.00	88	80-120	73-127	2	0-20	
Thallium 25	.00 24.64	99	24.33	97	80-120	73-127	1	0-20	
Vanadium 25	.00 24.89	100	24.76	99	80-120	73-127	1	0-20	
Zinc 25	.00 26.21	105	26.96	108	80-120	73-127	3	0-20	
Aluminum 25	.00 24.30	97	23.68	95	80-120	73-127	3	0-20	
Magnesium 25	.00 23.64	95	23.28	93	80-120	73-127	2	0-20	
Manganese 25	.00 24.88	100	24.71	99	80-120	73-127	1	0-20	

Total number of LCS compounds : 19

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Mulum

N/A
13-04-0823
EPA 3550B
EPA 8015B

Project: Tire Fire Property

Quality Control Sample ID	Matrix	lı	nstrument	D Pre	ate pared	Date Analyzed	1	LCS/LCSD Batch Number	
099-15-414-214	Solid		GC 45	04/	12/13	04/18/13		130412B03A	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Diesel Range Organics	400.0	370.3	93	399.1	100	75-123	7	0-12	

RPD - Relative Percent Difference, CL - Control Limit

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received:	N/A
Work Order No:	13-04-0823
Preparation:	EPA 3550B
Method:	EPA 8015B (M)

Project: Tire Fire Property

Quality Control Sample ID	Matrix		Instrument	D Pre	ate pared	Date Analyzed	l	LCS/LCSD Batch Number	
099-15-420-402	Solid		GC 45	04/	12/13	04/18/13		130412B04A	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	400.0	377.7	94	368.7	92	75-123	2	0-12	

CL - Control Limit RPD - Relative Percent Difference,

Freshwater Environmental Services
78 Sunny Brae Center
Arcata, CA 95521-6742

Date Received:	N/A
Work Order No:	13-04-0823
Preparation:	EPA 5030C
Method:	EPA 8015B

Quality Control Sample ID	Matrix		nstrument	D Pre)ate pared	Date Analyzed	1	LCS/LCSD Batch Number	
099-12-024-704	Solid GC 22 04/12/13 04/12/13			130412B01					
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Gasoline Range Organics	10.00	8.339	83	8.797	88	70-118	5	0-28	

RPD - Relative Percent Difference, CL - Control Limit

N/A

Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Date Received: Work Order No: 13-04-0823 Preparation: EPA 7471A Total Method: EPA 7471A

Project: Tire Fire Property

Quality Control Sample ID	Matrix	Matrix Instrument Solid Mercury		D Pre	ate pared	Date Analyzed	1	LCS/LCSD Batch Number	
099-04-007-9,225	Solid			04/12/13		04/12/13		130412L03	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS <u>%REC</u>	LCSD CONC	LCSD <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Mercury	0.8350	0.8115	97	0.8128	97	85-121	0	0-10	

RPD - Relative Percent Difference, CL - Control Limit

hM

Date Received:	N/A
Work Order No:	13-04-0823
Preparation:	EPA 3545
Method:	EPA 8270C

Project: Tire Fire Property

Quality Control Sample ID	Date Matrix Instrument Prepared		ate pared	Date Analyzed		LCS/LCSD Batch Number			
097-01-009-87	Solid	GC	/MS CCC	04/2	23/13	04/24/13		130423L06	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS <u>%REC</u>	LCSD CONC	LCSD <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Phenol	0.4000	0.3959	99	0.3888	97	58-112	2	0-15	
2-Chlorophenol	0.4000	0.3937	98	0.3933	98	59-107	0	0-17	
4-Chloro-3-Methylphenol	0.4000	0.3648	91	0.3525	88	58-124	3	0-15	
4-Nitrophenol	0.4000	0.3310	83	0.3383	85	44-134	2	0-19	
Pentachlorophenol	0.4000	0.2276	57	0.2583	65	24-138	13	0-21	
Acenaphthene	0.4000	0.3471	87	0.3444	86	55-121	1	0-15	
Pyrene	0.4000	0.4003	100	0.4167	104	45-129	4	0-15	

RPD - Relative Percent Difference, CL - Control Limit

hum

Date Received:N/AWork Order No:13-04-0823Preparation:EPA 3545Method:EPA 8270C

Project: Tire Fire Property

Quality Control Sample ID	Matrix	Instrumer	Instrument		Date Analyzed		LCS/LCSD Batch Number		
099-12-549-2,450	Solid	GC/MS CC	C C	04/12/13	04/15	5/13	1	30412L07	
Parameter S AL	<u>PIKE LC</u> DED CO	<u>S LCS</u> NC <u>%REC</u>	LCSD CONC	<u>LCSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>ME CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Acenaphthene 1	0.00 8.7	47 87	8.672	87	59-125	48-136	1	0-15	
Acenaphthylene 1	0.00 8.6	53 87	8.271	83	33-145	14-164	5	0-20	
Butyl Benzyl Phthalate 1	0.00 9.1	98 92	9.006	90	0-152	0-177	2	0-20	
4-Chloro-3-Methylphenol 1	0.00 9.2	59 93	9.122	91	61-121	51-131	1	0-14	
2-Chlorophenol 1	0.00 9.5	36 95	9.456	95	60-114	51-123	1	0-15	
1,4-Dichlorobenzene 1	0.00 9.2	92 93	9.149	91	61-121	51-131	2	0-21	
Dimethyl Phthalate 1	0.00 8.9	90	9.037	90	0-112	0-131	1	0-20	
2,4-Dinitrotoluene 1	0.00 9.7	18 97	9.921	99	51-141	36-156	2	0-16	
Fluorene 1	0.00 9.3	52 94	9.264	93	59-121	49-131	1	0-20	
N-Nitroso-di-n-propylamine 1	0.00 8.4	85 85	8.494	85	64-136	52-148	0	0-15	
Naphthalene 1	0.00 8.6	605 86	8.455	85	21-133	2-152	2	0-20	
4-Nitrophenol 1	0.00 8.1	59 82	9.136	91	38-152	19-171	11	0-31	
Pentachlorophenol 1	0.00 4.0	41 40	4.815	48	38-116	25-129	17	0-20	
Phenol 1	0.00 9.4	74 95	9.368	94	59-125	48-136	1	0-15	
Pyrene 1	0.00 8.5	68 86	8.421	84	51-141	36-156	2	0-14	
1,2,4-Trichlorobenzene 1	0.00 8.6	606 86	8.610	86	58-118	48-128	0	0-18	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Date Received:N/AWork Order No:13-04-0823Preparation:EPA 5035Method:EPA 8260B

Project: Tire Fire Property

Quality Control Sample ID	Matrix		Instrument		Date Prepared	Date Analyzed 04/17/13		LCS/LCSD Batch Number 130417L01		1
095-01-025-23,748	Soli	Solid		GC/MS W						
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS <u>%REC</u>	LCSD CONC	LCSD %REC	<u>%REC CL</u>	<u>ME CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	50.00	47.98	96	49.42	99	80-120	73-127	3	0-20	
Carbon Tetrachloride	50.00	59.24	118	61.11	122	65-137	53-149	3	0-20	
Chlorobenzene	50.00	53.10	106	55.27	111	80-120	73-127	4	0-20	
1,2-Dibromoethane	50.00	50.68	101	53.40	107	80-120	73-127	5	0-20	
1,2-Dichlorobenzene	50.00	53.55	107	54.54	109	80-120	73-127	2	0-20	
1,2-Dichloroethane	50.00	50.53	101	52.61	105	80-120	73-127	4	0-20	
1,1-Dichloroethene	50.00	46.83	94	47.64	95	68-128	58-138	2	0-20	
Ethylbenzene	50.00	51.88	104	53.82	108	80-120	73-127	4	0-20	
Toluene	50.00	49.65	99	51.47	103	80-120	73-127	4	0-20	
Trichloroethene	50.00	50.71	101	52.12	104	80-120	73-127	3	0-20	
Vinyl Chloride	50.00	40.84	82	41.09	82	67-127	57-137	1	0-20	
p/m-Xylene	100.0	105.5	105	110.1	110	75-125	67-133	4	0-25	
o-Xylene	50.00	54.45	109	55.83	112	75-125	67-133	3	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	47.74	95	49.85	100	70-124	61-133	4	0-20	
Tert-Butyl Alcohol (TBA)	250.0	260.3	104	263.7	105	73-121	65-129	1	0-20	
Diisopropyl Ether (DIPE)	50.00	47.11	94	49.51	99	69-129	59-139	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	51.06	102	53.46	107	70-124	61-133	5	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	47.89	96	50.25	101	74-122	66-130	5	0-20	
Ethanol	500.0	437.4	87	435.1	87	51-135	37-149	1	0-27	

Total number of LCS compounds : 19

Total number of ME compounds : 0

Total number of ME compounds allowed : LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

1

Mulhan

Glossary of Terms and Qualifiers

Work Order Number: 13-04-0823

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

lhn

Don Burley

From: Sent: To: Subject: Attachments: Stan Thiesen [stan@freshwaterenvironmentalservices.com] Friday, April 19, 2013 2:10 PM Don Burley RE: Tire Fire Property / CEL 13-04-0823 image001.jpg; image002.jpg

Please proceed with the reanalysis of all samples from the Tire-Fire site for magnesium.

Stan Thiesen, P.G. Geologist Freshwater Environmental Services <u>stan@freshwaterenvironmentalservices.com</u> 78 Sunny Brae Center Arcata, CA 95521 Office: 707 839-0091 Cell: 707 498-0793

From: Don Burley [mailto:dburley@calscience.com] Sent: Friday, April 19, 2013 2:06 PM To: Stan Thiesen Subject: RE: Tire Fire Property / CEL 13-04-0823

Stan,

I took the metals data package back to the lab, They will evaluate the aluminum data; if OK, they will re-process the data.

Please reply with authorization to re-analyze the 10 samples for magnesium. We will get a change order started as soon as it is received.

Unless directed otherwise, we will re-issue the entire report when the analysis for magnesium is completed.

Thanks.

Don

From: Stan Thiesen [mailto:stan@freshwaterenvironmentalservices.com]
Sent: Friday, April 19, 2013 1:51 PM
To: Don Burley
Subject: RE: Tire Fire Property / CEL 13-04-0823

Don,

Please proceed with the aluminum reprocessing but we probably will not want to reanalyze. I would prefer to have the report reissued to include the aluminum but if it is simpler for you go ahead and generate a separate report whichever is easier.

Thanks for your prompt service.

Stan Thiesen, P.G. Geologist Freshwater Environmental Services stan@freshwaterenvironmentalservices.com 78 Sunny Brae Center Arcata, CA 95521 Office: 707 839-0091 Cell: 707 498-0793

From: Don Burley [mailto:dburley@calscience.com] Sent: Friday, April 19, 2013 1:36 PM To: Stan Thiesen Subject: RE: Tire Fire Property / CEL 13-04-0823

Stan,

For the subject analytical batch, the instrument was calibrated for aluminum but not magnesium. If the QC is OK for aluminum, we can re-process the data to report aluminum on Monday for an extra cost of \$50 (\$5/sample). If the QC is not within control limits, we would need to re-analyze for aluminum.

In order to report magnesium, we will need to re-analyze the digest. Results would be available next Friday on NTAT for an extra cost of \$100 (\$10/sample).

Please advise as to how, or if, you want to proceed. Thanks.

Don

From: Stan Thiesen [mailto:stan@freshwaterenvironmentalservices.com]
Sent: Friday, April 19, 2013 1:17 PM
To: Don Burley
Subject: RE: Tire Fire Property / CEL 13-04-0823

Hi Don,

Thanks for the report. Can you report aluminum and magnesium for the samples and if so how much extra would that cost?

Stan

Stan Thiesen, P.G. Geologist Freshwater Environmental Services stan@freshwaterenvironmentalservices.com 78 Sunny Brae Center Arcata, CA 95521 Office: 707 839-0091 Cell: 707 498-0793

From: Don Burley [mailto:dburley@calscience.com] Sent: Friday, April 19, 2013 11:19 AM To: stan@freshwaterenvironmentalservices.com Subject: Tire Fire Property / CEL 13-04-0823

Stan,

Attached are the following items:

Report Invoice Credit card payment receipt
alscience	7440 LINCO	LN WAY					1	en ante ante ante ante ante ante ante an									СН	AIN	OF	CU	STC	DOS	RE	CO	R
nvironmental	GARDEN GI	ROVE, CA 92	841-1427					WO #	#/LAB1	JSE ONI	Y				D	ATE:					4/10/1	3			
aboratories, Inc.	TEL: (714) 8	95-5494 . FA	X: (714) 894	4-7501					13	10/	44		28		P.	AGE:	adovyzana zarow	1] 8/8711//00/2004/10/4		OF	****	1	-	nan seconda
ABORATORY CLIENT:	wironmental Se	nvices			aan galagaa ja siisa j	n prosta de la companya	******	CLIEI	NT PRO	JECT N	AME / N	UMBER	:				001600000002		P.O. 1	NO.:	ahaanajahakaana		Angle Ang	anna an Anna a	200404000
ADDRESS:				المارية ويواجع المارية والمارية والمراجع والمراجع				Tire	e Fire	Prope	rty														
78 Sunny Brae Center								PRO.	JECT CO	ONTACT		,							SAMF	LER(S)	: (PRIN	Γ)			
CITY: Arcata			STATE:	CA	9552	1		Stan Thiesen Orrin Plocheer																	
^{EL:} 707 839-0091	E-MAIL: stan	@freshwatere	environment	alservices.	com	*****		REQUESTED ANALYSES						anna an	255084										
URNAROUND TIME:	an a	gan mananan ana ana ana ana ana ana ana a		an a	*****		and a second		4	<u> </u>				******			- NOISARDROND				471/		T		
SAME DAY 24 HR	48 HR 07	72 HR 🛛	5 DAYS	区 10 DA	VYS	0005			6-C4	015B											and 7				
	NA				100	NA			or (C	PA 8(5035)						ତ୍ର	6020				
PECIAL INSTRUCTIONS:					1	T			C36)	Oil E				rep (!						218.	(EPA				
Please Homogenize Samples p	rior to Analysi	S.	lunium -t	-					(C6-1	lotor	30) 01			re P.				270)	747X	39 or	anese				
cobalt, copper, lead, manganes	nic, darium, be	eryillum, cad nolvbdenum.	mium, cnro nickel. sel	enium,				0	0 or	W pu	(826		3260)	a Co		81)		or (8ź	010/.	r 715	mang	0			
silver, thallium, vanadium, zinc.	,	· • · , · • · • · · · · ,	· · · · · · · · , ·	,	ved		red	ĞŖ	DR	sela	TBE	(09)	es (8	Ten	3270	s (80	82)	10) 0	ls (6	0 96	tals +	2			
No percent moisture container	was filled for T	Fire-Fire-2-0	.5'-0.6'. T	NO.	eser	erve	Filte	ю (б)	0 (p)	(Die	N/X	s (82	genat	ore /	Cs (icide	s (80	s (83	Meta	, <u>,</u>] (i	17 Me	Š			
SE SAMPLE ID	DATE	TIME	MATRIX	OF CONT.	Unpr	Pres	Field	HdT	HdT	HdT	BTE	NOC V	0xý	En C	svo	Pest	PCB	PNA	T22	S S	CAM	ž			
Tire-Fire-1-0.0'-0.1'	4/9/2013	11:00	Soil	11	2	9	NA	x		x		x		.х.	х						x	X			Γ
Tire-Fire-1-0.5'-0.6'	4/9/2013	11:20	Soil	4	1	3	NA	x		x		x		x	X						x				Γ
2 Tire-Fire-2-0.0'-0.1'	4/9/2013	12:10	Soil	4	1	3	NA	x		x		x		x	х						х				Γ
Tire-Fire-2-0.5'-0.6'	4/9/2013	12:20	Soil	4	1	3	NA	х		x		x		x	х						x				Γ
Tire-Fire-3-0.0'-0.1'	4/9/2013	11:35	Soil	4	1	3	NA	х		x		x		x	х						х				
Tire-Fire-3-0.5'-0.6'	4/9/2013	11:45	Soil	4	1	3	NA	х		x		x		x	х						x				
7 Tire-Fire-4-0.0'-0.1'	4/9/2013	12:00	Soil	4	1	3	NA	х		x		x		x	x						x				L
Tire-Fire-4-0.5'-0.6'	4/9/2013	12:05	Soil	4	1	3	NA	х		x		x		x	x						x				L
9 Tire-Fire-5-0.0'-0.1'	4/9/2013	11:30	Soil	4	4	3	NA	x		x		x	L	x	x						x				
10 Tire-Fire-Background-Metals-	4/9/2013	12:35	Soil	1	1	NA	NA	L						L							x				L
Relinquished by: (Signature)	411.1	13 11	1	Red	ceived I	oy: (Sig	nature//	Affiliatio	on)							,		Date	:			Time:			
Relinquished by: (Signature)	<u> 7 //61</u>	1), [700	Red	ceived l	oy: (Sig	nature//	Affiliatio	on)			*****	AT	A-1		[·····	Date	1.	<u> </u>	*****	Time	·	 ^)	
													M		90 K	7		41	11/	B			<u>30</u>	ノ	
Relinquished by: (Signature)	, , , , , , , , , , , , , , , , , , ,		(ħ	AN Rea	ceived I	oy: (Sig	nature//	Affiliatio	on)			1	17	1				Date	:	-		Time			
			~	1														1				1			

Page 1 of 1 Page 61 of 63

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

				Page	e2 of 63
Calscience Environmental	WOR	K ORDER #	: 13-0	4-08	23
Aboratories, Inc. SAMPLE	REC	EIPT FO	RM	Cooler _	of
CLIENT: Freshwater Enr.			DATE	: _04 /	/13
TEMPERATURE: Thermometer ID: SC1 (Criteri	ia: 0.0 °C -	- 6.0 °C, not froze	en except-s	ediment/tiss	ue)
Temperature 2.2°C-0.2°C (CF)	= 2	. <i>O</i> _⁰C	Blank	🗌 Samp	ble
□ Sample(s) outside temperature criteria (PM/APN	M contacte	d by:).			
☐ Sample(s) outside temperature criteria but recei	ived on ice	chilled on same	dav of samp	olina.	
□ Received at ambient temperature, placed o	on ice for	transport by C	ourier.		
Ambient Temperature:			•••••	Initia	al: ΛP
CUSTODY SEALS INTACT:					
Cooler No (Not I	Intact)	□ Not Present	: □ N/A	. Initi	al: <u></u>
□ Sample □ □ No (Not I	Intact)	Not Present	:	Initi	al: <u> </u>
	:		: 	- · ·	· · .
SAMPLE CONDITION:	111	t	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received v	with samp	oles			
COC document(s) received complete		······			
Collection date/time, matrix, and/or # of containers log	gged in bas	ed on sample label	S.		
□ No analysis requested. □ Not relinquished. □	I No date/tir	ne relinquished.	-	_	_
Sampler's name indicated on COC					
Sample container label(s) consistent with COC			Ц		
Proper container(s) made and good condition	uses requi	ostad			
Analyses received within holding time	/Ses requ	esieu			
nH / Res Chlorine / Diss Sulfide / Diss Oxygen	received	within 24 hours	ല П		
Proper preservation noted on COC or sample co	ntainer				
\Box Unpreserved vials received for Volatiles analysis			ല		_
Volatile analysis container(s) free of headspace.					A
Tedlar bag(s) free of condensation			🗆		
CONTAINER TYPE:			_ 3/	2	
Solid: Ź4ozCGJ Ź8ozCGJ □16ozCGJ □S	3leeve () □EnCore	es [®] ⊠Terr	aCores® 🛛	202 PJ
Water: VOA VOAh VOAna ₂ 125AGB	□125AG	Bh □125AGBp	o □1AGB	□1AGB na ₂	₂ □1AGB s
□500AGB □500AGJ □500AGJs □250AGB	□250C	GB □250CGB	s □1PB	□1PB na	□500PB
□250PB □250PBn □125PB □125PB znna □]100PJ [□100PJ na ₂ □]
Air: □Tedlar [®] □Canister Other: □ T Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s:	Γrip Blan ϶ Ζ: Ziploc/F H₂SO₄ u: Ultr	k Lot#: Resealable Bag E: E ra-pure znna : ZnAc ₂ +N	Labelec nvelope aOH f: Filtered	l/Checked by Reviewed b Scanned b	γ: <u>τ</u> ~ y: <u>μρ</u> y: <u>μρ</u>

WORK ORDER #: 13-04-0 2 2 3

SAMPLE ANOMALY FORM

Calscience

nvironmental

aboratories, inc.

SAMPLI	ES - CC	NTAIN	ERS & L	ABELS:			Comme	ents:					
□ Sam	ple(s) N		EIVED bu	It listed on (- -						
	pie(s) re	ceivea											
	ing time	expired	i – list sai	npie iD(s) ar					a far				
		quantitie	s for ana	li ysis – list te	est				1993 - 1993 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -				
	oper co	ntainer(s) usea –	list test				<u> </u>	<u></u>	·			
	oper pre	eservativ	ve usea -		11-1)	· · ·						
	reserva	tive note	a on CO	C or label -		s notity lab							
	pie labe	is lilegir Va) da m	note – note		er type	n a seta			<u>, desta de la</u> Testa d	<u></u>			
		i(s) do n	ot match	COC – NOT	e in comr	nents	()0		1 10				
	Sample		0.11.	4 . J			(-1) F	<u>eccive</u>		1 containers			
	Date ar	10/or IIr		tea			<u></u> h5	and of	<u>Teles // .</u>				
	Project	Informa	ation					1× Ter	racor	es.			
	# of Co	ntainer(S)					12 8:00	2- cleg	r glass jar			
	Analys	IS ())					· · · · · · · · · · · · · · · · · · ·	<u>(× 4 sz</u> z × 2	- clea	r glass jar			
	pie cont	ainer(s)	comproi	nisea – Note	e in comr	nents		3 ~ 2 0-	r plas	The jar			
	water p	oresent	n sample	e container			<u> </u>		<u>in produc</u> Secondaria s econd				
	Broken			La al			(2-3,5	-9) Re	ceive	d 3 contriber			
	ple con	ainer(s)	not labe	led	Nista Inc.		în s	tend ot	T e				
	sample	containe	er(s) com	promised –	Note in c	comments	. <u></u> ,	JX TEP	- veran	<u>es</u>			
	Flat						. <u></u>	1 7 02	- clea	ralass jar			
	very lo	w in voi	ume	J J P			<u></u>	1 202	_ pras	The jear.			
	Leaking	g (Not tr	ansterre	a - duplicate	e bag sui	® Doort	a)						
	Leaking	g (transi	erred Int	o Caiscienc	e lediar	Bag")	·····						
	Leaking	g (transi	erred int	o Client's T	ediar" Ba	ag")			··.				
	er:	in a statistica. A transmissioner							Addina (Sana) Sanatan				
HEADS	PACE -	- Contai	ners wit	h Bubble >	6mm o	or ¼ inch:							
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received		Analysis			
						-			anan an				
				· · · · · ·					•	· · ·			
									· · ·				
Commen	ts:					•							
						: :	-						
*Transferr	ed at Clie	ent's requ	est.				Ir	nitial / Da	ite:	w 04/11/13			

SOP T100_090 (08/31/11)

APPENDIX E Laboratory Report and Chain-of-Custody Record - 3

WORK ORDER NUMBER: 13-07-1674

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Freshwater Environmental Services Client Project Name: Tire Fire Property Attention: Stan Thiesen 78 Sunny Brae Center Arcata, CA 95521-6742

Approved for release on 08/01/2013 by: Don Burley Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

ResultLink ▶

Email your PM >

40 Lincoln Way, Garden Grove, CA 92841-1432 🔹 TEL: (714) 895-5494 🔹 FAX: (714) 894-7501 🔹 www.calscience.com

Client Project Name:Tire Fire PropertyWork Order Number:13-07-1674

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data.3.1 EPA 8015B DRO (Soil).3.2 EPA 8015B (M) TPH Motor Oil (Soil).3.3 EPA 6020 ICP/MS Metals (Soil).3.4 EPA 7471A Mercury (Soil).3.5 EPA 8270C Semi-Volatile Organics (Soil).	5 5 7 9 12 13
4	Quality Control Sample Data.4.1 MS/MSD.4.2 PDS/PDSD.4.3 LCS/LCSD.	37 37 42 43
5	Sample Analysis Summary	48
6	Glossary of Terms and Qualifiers.	49
7	Chain of Custody/Sample Receipt Form	50

Contents

Work Order: 13-07-1674

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 07/25/13. They were assigned to Work Order 13-07-1674.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

13-07-1674

07/25/13

Tire Fire Property

Client: Freshwater Environmental Services 78 Sunny Brae Center Arcata, CA 95521-6742

Work Order: Project Name: PO Number: Date Received:

Attn: Stan Thiesen

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
Tire-Fire-1-(1.2')	13-07-1674-1	07/24/13 10:30	1	Soil
Tire-Fire-2-(1.3')	13-07-1674-2	07/24/13 11:00	1	Soil
Tire-Fire-3-(1.5')	13-07-1674-3	07/24/13 11:40	2	Soil
Tire-Fire-4-(1.0')	13-07-1674-4	07/24/13 11:20	1	Soil
Tire-Fire-6-(0.0'-0.1')	13-07-1674-5	07/24/13 11:51	1	Soil
Tire-Fire-7-(0.0'-0.1')	13-07-1674-6	07/24/13 12:05	1	Soil
Tire-Fire-8-(1.3')	13-07-1674-7	07/24/13 11:50	1	Soil

Freshwater Environmental Services			Date Re	ceived:			07/25/13
78 Sunny Brae Center			Work O	rder:			13-07-1674
Arcata, CA 95521-6742			Prepara	tion:			EPA 3550B
			Method:				EPA 8015B
			Units:				mg/kg
Project: Tire Fire Property						P	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-3-(1.5')	13-07-1674-3-B	07/24/13 11:40	Soil	GC 45	07/29/13	07/30/13 16:36	130729B13
Parameter		Result		<u>RL</u>	DF	Qu	alifiers
Diesel Range Organics		13		5.0	1	HD),SG
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		85		61-145			
Tire-Fire-4-(1.0')	13-07-1674-4-A	07/24/13 11:20	Soil	GC 45	07/29/13	07/30/13 16:52	130729B13
Parameter		Result		RL	DF	Qu	alifiers
Diesel Range Organics		ND		5.0	1	SG	3
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		84		61-145			
Tire-Fire-6-(0.0'-0.1')	13-07-1674-5-В	07/24/13 11:51	Soil	GC 45	07/29/13	07/30/13 17:46	130729B13
Parameter		<u>Result</u>		RL	DF	<u>Qu</u>	lalifiers
Diesel Range Organics		14		5.0	1	SG	G,HD
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		90		61-145			
Tire-Fire-7-(0.0'-0.1')	13-07-1674-6-B	07/24/13 12:05	Soil	GC 45	07/29/13	07/30/13 17:11	130729B13
Parameter		Result		RL	DF	Qu	alifiers
Diesel Range Organics		33		10	2	SG	G,HD
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		85		61-145			
Tire-Fire-8-(1.3')	13-07-1674-7-В	07/24/13 11:50	Soil	GC 45	07/29/13	07/30/13 17:27	130729B13
Parameter		Result		RL	DF	Qu	alifiers
Diesel Range Organics		15		5.0	1	SG	9,HD
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		Q1		61-145			
		51		01-145			

78 Sunny Brae Center			Work Ord	der:			13-07-1674
Arcata, CA 95521-6742			Preparati	on:			EPA 3550B
			Method:				EPA 8015B
			Units:				mg/kg
Project: Tire Fire Property						Pa	ge 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-414-258	N/A	Soil	GC 45	07/29/13	07/30/13 14:33	130729B13
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Diesel Range Organics		ND		5.0	1		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		88		61-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit. 07/25/13

Freshwater Environmental Services			Date Re	eceived:			07/25/13
78 Sunny Brae Center		,	Work O	rder:			13-07-1674
Arcata, CA 95521-6742			Prepara	ation:			EPA 3550B
			Method	:		E	PA 8015B (M)
			Units:				mg/kg
Project: Tire Fire Property						Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analvzed	QC Batch ID
Tire-Fire-3-(1.5')	13-07-1674-3-В	07/24/13 11:40	Soil	GC 45	07/29/13	07/30/13 16:36	130729B14
Parameter		Result		RL	DF	Qua	alifiers
TPH as Motor Oil		81		25	1	SG	,HD
<u>Surrogate</u> n-Octacosane		<u>Rec. (%)</u> 85		<u>Control Limits</u> 61-145	<u>Qualifiers</u>		
Tire-Fire-4-(1.0')	13-07-1674-4-B	07/24/13 11:20	Soil	GC 45	07/29/13	07/30/13 16:52	130729B14
Parameter		Result		RL	DF	Qua	alifiers
TPH as Motor Oil		ND		25	1	SG	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		84		61-145			
Tire-Fire-6-(0.0'-0.1')	13-07-1674-5-B	07/24/13 11:51	Soil	GC 45	07/29/13	07/30/13 17:46	130729B14
Parameter		Result		RL	DF	Qua	alifiers
TPH as Motor Oil		150		25	1	SG	,HD
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		90		61-145			
Tire-Fire-7-(0.0'-0.1')	13-07-1674-6-B	07/24/13 12:05	Soil	GC 45	07/29/13	07/30/13 17:11	130729B14
Parameter		Result		RL	DF	Qua	alifiers
TPH as Motor Oil		170		50	2	SG	,HD
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		85		61-145			
Tire-Fire-8-(1.3')	13-07-1674-7-В	07/24/13 11:50	Soil	GC 45	07/29/13	07/30/13 17:27	130729B14
Parameter		Result		RL	DF	Qua	alifiers
TPH as Motor Oil		88		25	1	SG	,HD
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		91		61-145			

<i>alscience</i> <i>nvironmental</i> <i>aboratories, Inc.</i>	Analytical Report	
Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)
	Units:	mg/kg
Project: Tire Fire Property		Page 2 of 2

_

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-420-526	N/A	Soil	GC 45	07/29/13	07/30/13 14:33	130729B14
Parameter		Result	R	<u>L</u>	DF	Qualif	iers
TPH as Motor Oil		ND	2	5	1		
Surrogate		<u>Rec. (%)</u>	<u>C</u>	Control Limits	<u>Qualifiers</u>		
n-Octacosane		88	6	1-145			

Return to Contents

alscience nvironmental . aboratories. Inc.

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3050B
	Method:	EPA 6020
	Units:	mg/kg
Project: Tire Fire Property		Page 1 of 3

Analytical Report

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-3-(1.5')	13-07-1674-3-В	07/24/13 11:40	Soil	ICP/MS 03	07/26/13	07/29/13 12:26	130726L04E
Parameter		<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qualit</u>	fiers
Arsenic		ND	1	.00	1		
Barium		12.1	1	.00	1		
Cadmium		ND	1	.00	1		
Chromium		12.2	2	.00	1		
Cobalt		14.4	1	.00	1		
Copper		204	1	.00	1		
Lead		ND	1	.00	1		
Nickel		28.3	1	.00	1		
Vanadium		41.0	2	.00	1		
Zinc		55.1	5	.00	1		
Aluminum		11800	2	5.0	1		
Magnesium		12400	2	5.0	1		
Manganese		358	2	.50	1		

Tire-Fire-6-(0.0'-0.1')	13-07-1674-5-B	07/24/13 11:51	Soil	ICP/MS 03	07/26/13	07/29/13 17:20	130726L04E
Parameter		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	alifiers
Arsenic		ND	1.0	0	1		
Barium		15.5	1.0	0	1		
Cadmium		ND	1.0	0	1		
Chromium		12.9	2.0	0	1		
Cobalt		10.7	1.0	0	1		
Copper		104	1.0	0	1		
Lead		3.96	1.0	0	1		
Nickel		20.4	1.0	0	1		
Vanadium		28.1	2.0	0	1		
Zinc		90.2	5.0	0	1		
Aluminum		8650	25.	0	1		
Magnesium		9080	25.	0	1		
Manganese		304	2.5	0	1		

07/25/13 13-07-1674

EPA 3050B

Page 2 of 3

EPA 6020

mg/kg

alscience nvironmental

📕 aboratories, Inc.		
Freshwater Environmental Services	Date Received:	
78 Sunny Brae Center	Work Order:	
Arcata, CA 95521-6742	Preparation:	
	Method:	

Analytical Report

Units:

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-7-(0.0'-0.1')	13-07-1674-6-B	07/24/13 12:05	Soil	ICP/MS 03	07/26/13	07/29/13 17:23	130726L04E
Parameter		<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	Qualif	iers
Arsenic		13.1	1.	.00	1		
Barium		142	1.	.00	1		
Cadmium		1.41	1.	.00	1		
Chromium		95.8	2.	.00	1		
Cobalt		22.8	1.	.00	1		
Copper		234	1.	.00	1		
Lead		147	1.	.00	1		
Nickel		85.5	1.	.00	1		
Vanadium		50.9	2.	.00	1		
Zinc		1130	5.	.00	1		
Aluminum		25400	2	5.0	1		
Magnesium		15700	2	5.0	1		
Manganese		694	2.	.50	1		

Tire-Fire-8-(1.3')	13-07-1674-7-В	07/24/13 11:50	Soil	ICP/MS 03	07/26/13	07/29/13 17:26	130726L04E
Parameter		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	alifiers
Arsenic		ND	1.0	0	1		
Barium		14.5	1.0	0	1		
Cadmium		ND	1.0	0	1		
Chromium		14.5	2.0	0	1		
Cobalt		17.7	1.0	0	1		
Copper		240	1.0	0	1		
Lead		1.04	1.0	0	1		
Nickel		39.2	1.0	0	1		
Vanadium		47.6	2.0	0	1		
Zinc		64.4	5.0	0	1		
Aluminum		14100	25.	0	1		
Magnesium		15600	25.	0	1		
Manganese		414	2.5	0	1		

alscience nvironmental aboratories, Inc.

Analytical	Report
/	

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3050B
	Method:	EPA 6020
	Units:	mg/kg
Project: Tire Fire Property		Page 3 of 3

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-621-269	N/A	Soil	ICP/MS 03	07/26/13	07/29/13 16:29	130726L04E
Parameter		<u>Result</u>	Ē	<u> </u>	DF	Qualit	fiers
Arsenic		ND	1	.00	1		
Barium		ND	1	.00	1		
Cadmium		ND	1	.00	1		
Chromium		ND	2	00	1		
Cobalt		ND	1	.00	1		
Copper		ND	1	.00	1		
Lead		ND	1	.00	1		
Nickel		ND	1	.00	1		
Vanadium		ND	2	.00	1		
Zinc		ND	5	.00	1		
Aluminum		ND	2	5.0	1		
Magnesium		ND	2	5.0	1		
Manganese		ND	2	50	1		

Analytical Report

Freshwater Environmental Service	es		Date Re	ceived:			07/25/13
78 Sunny Brae Center			Work O	rder:			13-07-1674
Arcata, CA 95521-6742			Prepara	tion:		EP	A 7471A Total
			Method:				EPA 7471A
			Units:				mg/kg
Project: Tire Fire Property						Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-3-(1.5')	13-07-1674-3-A	07/24/13 11:40	Soil	Mercury	07/29/13	07/29/13 12:50	130729L01
Parameter		Result		RL	DF	Qua	lifiers
Mercury		ND		0.0835	1		
Tire-Fire-6-(0.0'-0.1')	13-07-1674-5-A	07/24/13 11:51	Soil	Mercury	07/29/13	07/29/13 12:57	130729L01
Parameter		Result		RL	DF	Qua	lifiers
Mercury		ND		0.0835	1		
Tire-Fire-7-(0.0'-0.1')	13-07-1674-6-A	07/24/13 12:05	Soil	Mercury	07/29/13	07/29/13 12:59	130729L01
Parameter		Result		RL	DF	Qua	lifiers
Mercury		ND		0.0835	1		
Tire-Fire-8-(1.3')	13-07-1674-7-A	07/24/13 11:50	Soil	Mercury	07/29/13	07/29/13 13:02	130729L01
Parameter		Result		RL	DF	Qua	lifiers
Mercury		ND		0.0835	1		
Method Blank	099-04-007-9486	N/A	Soil	Mercury	07/29/13	07/29/13 12:46	130729L01
Parameter		Result		RL	DF	Qua	lifiers
Mercury		ND		0.0835	1		

alscience nvironmental aboratories, Inc.

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: Tire Fire Property		Page 1 of 24

Analytical Report

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-1-(1.2')	13-07-1674-1-A	07/24/13 10:30	Soil	GC/MS CCC	07/29/13	07/31/13 23:29	130729L10
Parameter		Result		RL	DF	Qual	lifiers
Phenol		ND		0.020	1		
2-Chlorophenol		ND		0.020	1		
2-Methylphenol		ND		0.020	1		
3/4-Methylphenol		ND		0.020	1		
2-Nitrophenol		ND		0.020	1		
2,4-Dimethylphenol		ND		0.020	1		
2,4-Dichlorophenol		ND		0.020	1		
4-Chloro-3-Methylphenol		ND		0.020	1		
2,4-Dinitrophenol		ND		0.10	1		
4-Nitrophenol		ND		0.020	1		
4,6-Dinitro-2-Methylphenol		ND		0.10	1		
2,4,6-Trichlorophenol		ND		0.020	1		
2,4,5-Trichlorophenol		ND		0.020	1		
Pentachlorophenol		ND		0.020	1		
Dimethyl Phthalate		ND		0.010	1		
Diethyl Phthalate		ND		0.010	1		
Di-n-Butyl Phthalate		ND		0.010	1		
Butyl Benzyl Phthalate		ND		0.010	1		
Bis(2-Ethylhexyl) Phthalate		ND		0.010	1		
Di-n-Octyl Phthalate		ND		0.010	1		
Naphthalene		ND		0.020	1		
Acenaphthylene		ND		0.020	1		
Acenaphthene		ND		0.020	1		
Fluorene		ND		0.020	1		
Phenanthrene		ND		0.020	1		
Anthracene		ND		0.020	1		
Fluoranthene		ND		0.016	1		
Pyrene		ND		0.020	1		
Benzo (a) Anthracene		ND		0.020	1		
Chrysene		ND		0.020	1		
Benzo (k) Fluoranthene		ND		0.020	1		
Benzo (b) Fluoranthene		ND		0.020	1		
Benzo (a) Pyrene		ND		0.020	1		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1		
Dibenz (a,h) Anthracene		ND		0.020	1		

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Da		07/25/13 13-07-1674 EPA 3545		
78 Sunny Brae Center	W				
Arcata, CA 95521-6742	Pr				
· · · · · · · · · · · · · · · · · · ·	Me	ethod:		EPA 8270C	
	Ur	nits:		ma/ka	
Project: Tire Fire Property	-			Page 2 of 24	
Parameter	Result	RL	DF	Qualifiers	
Benzo (g,h,i) Perylene	ND	0.020	1		
N-Nitrosodimethylamine	ND	0.020	1		
Aniline	ND	0.020	1		
Bis(2-Chloroethyl) Ether	ND	0.10	1		
1,3-Dichlorobenzene	ND	0.020	1		
1,4-Dichlorobenzene	ND	0.020	1		
Benzyl Alcohol	ND	0.020	1		
1,2-Dichlorobenzene	ND	0.020	1		
Bis(2-Chloroisopropyl) Ether	ND	0.020	1		
N-Nitroso-di-n-propylamine	ND	0.020	1		
Hexachloroethane	ND	0.020	1		
Nitrobenzene	ND	0.10	1		
Isophorone	ND	0.020	1		
Benzoic Acid	ND	0.10	1		
Bis(2-Chloroethoxy) Methane	ND	0.020	1		
1,2,4-Trichlorobenzene	ND	0.020	1		
4-Chloroaniline	ND	0.020	1		
Hexachloro-1,3-Butadiene	ND	0.020	1		
2-Methylnaphthalene	ND	0.020	1		
1-Methylnaphthalene	ND	0.020	1		
Hexachlorocyclopentadiene	ND	0.020	1		
2-Chloronaphthalene	ND	0.020	1		
2-Nitroaniline	ND	0.020	1		
3-Nitroaniline	ND	0.020	1		
Dibenzofuran	ND	0.020	1		
2,4-Dinitrotoluene	ND	0.020	1		
2,6-Dinitrotoluene	ND	0.020	1		
4-Chlorophenyl-Phenyl Ether	ND	0.020	1		
4-Nitroaniline	ND	0.020	1		
Azobenzene	ND	0.020	1		
N-Nitrosodiphenylamine	ND	0.020	1		
4-Bromophenyl-Phenyl Ether	ND	0.020	1		
Hexachlorobenzene	ND	0.020	1		
Benziaine	ND	0.10	1		
Pyriaine	ND	0.020	1		
3,3-JICHIOFODENZIAINE	ND	0.020	1		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
2-Fluorophenol	30	25-121			

<i>Calscience</i> <i>nvironmental</i> <i>Laboratories, Inc.</i>	Analytical F	Report			
Freshwater Environmental Services	Dat		07/25/13		
78 Sunny Brae Center	Wa	Work Order:			
Arcata, CA 95521-6742	Pre		EPA 3545		
	Me		EPA 8270C		
	Uni		mg/kg		
Project: Tire Fire Property				Page 3 of 24	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
Phenol-d6	34	24-113			
Nitrobenzene-d5	38	23-120			
2-Fluorobiphenyl	57	30-115			

19-122

18-137

45

80

2,4,6-Tribromophenol

p-Terphenyl-d14

07/25/13 13-07-1674

EPA 3545

mg/kg

EPA 8270C

Page 4 of 24

Calscience nvironmental Laboratories, Inc.

📕 aboratories, Inc.		
Freshwater Environmental Services	Date Received:	
78 Sunny Brae Center	Work Order:	
Arcata, CA 95521-6742	Preparation:	
	Method:	

Analytical Report

Units:

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-2-(1.3')	13-07-1674-2-A	07/24/13 11:00	Soil	GC/MS CCC	07/29/13	07/31/13 23:55	130729L10
Parameter		Result		RL	DE	Quali	fiers
Phenol		ND		0.020	1		
2-Chlorophenol		ND		0.020	1		
2-Methylphenol		ND		0.020	1		
3/4-Methylphenol		ND		0.020	1		
2-Nitrophenol		ND		0.020	1		
2,4-Dimethylphenol		ND		0.020	1		
2,4-Dichlorophenol		ND		0.020	1		
4-Chloro-3-Methylphenol		ND		0.020	1		
2,4-Dinitrophenol		ND		0.10	1		
4-Nitrophenol		ND		0.020	1		
4,6-Dinitro-2-Methylphenol		ND		0.10	1		
2,4,6-Trichlorophenol		ND		0.020	1		
2,4,5-Trichlorophenol		ND		0.020	1		
Pentachlorophenol		ND		0.020	1		
Dimethyl Phthalate		0.011		0.010	1		
Diethyl Phthalate		ND		0.010	1		
Di-n-Butyl Phthalate		ND		0.010	1		
Butyl Benzyl Phthalate		ND		0.010	1		
Bis(2-Ethylhexyl) Phthalate		ND		0.010	1		
Di-n-Octyl Phthalate		ND		0.010	1		
Naphthalene		ND		0.020	1		
Acenaphthylene		ND		0.020	1		
Acenaphthene		ND		0.020	1		
Fluorene		ND		0.020	1		
Phenanthrene		ND		0.020	1		
Anthracene		ND		0.020	1		
Fluoranthene		ND		0.016	1		
Pyrene		ND		0.020	1		
Benzo (a) Anthracene		ND		0.020	1		
Chrysene		ND		0.020	1		
Benzo (k) Fluoranthene		ND		0.020	1		
Benzo (b) Fluoranthene		ND		0.020	1		
Benzo (a) Pyrene		ND		0.020	1		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1		
Dibenz (a,h) Anthracene		ND		0.020	1		

Return to Contents

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services 78 Suppy Brae Center	Date Red Work Ord		07/25/13 13-07-1674	
Arcata, CA 95521-6742	Preparat Method:		EPA 3545 EPA 8270C	
	Units:			mg/kg
Project: Tire Fire Property				Page 5 of 24
Parameter	Result	RL	DF	Qualifiers
Benzo (g,h,i) Perylene	ND	0.020	1	
N-Nitrosodimethylamine	ND	0.020	1	
Aniline	ND	0.020	1	
Bis(2-Chloroethyl) Ether	ND	0.10	1	
1,3-Dichlorobenzene	ND	0.020	1	
1,4-Dichlorobenzene	ND	0.020	1	
Benzyl Alcohol	ND	0.020	1	
1,2-Dichlorobenzene	ND	0.020	1	
Bis(2-Chloroisopropyl) Ether	ND	0.020	1	
N-Nitroso-di-n-propylamine	ND	0.020	1	
Hexachloroethane	ND	0.020	1	
Nitrobenzene	ND	0.10	1	
Isophorone	ND	0.020	1	
Benzoic Acid	ND	0.10	1	
Bis(2-Chloroethoxy) Methane	ND	0.020	1	
1,2,4-Trichlorobenzene	ND	0.020	1	
4-Chloroaniline	ND	0.020	1	
Hexachloro-1,3-Butadiene	ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1	
1-Methylnaphthalene	ND	0.020	1	
Hexachlorocyclopentadiene	ND	0.020	1	
2-Chloronaphthalene	ND	0.020	1	
2-Nitroaniline	ND	0.020	1	
3-Nitroaniline	ND	0.020	1	
Dibenzofuran	ND	0.020	1	
2,4-Dinitrotoluene	ND	0.020	1	
2,6-Dinitrotoluene	ND	0.020	1	
4-Chlorophenyl-Phenyl Ether	ND	0.020	1	
4-Nitroaniline	ND	0.020	1	
Azobenzene	ND	0.020	1	
N-Nitrosodiphenylamine	ND	0.020	1	
4-Bromophenyl-Phenyl Ether	ND	0.020	1	
Hexachlorobenzene	ND	0.020	1	
Benzidine	ND	0.10	1	
Pyridine	ND	0.020	1	
3,3'-Dichlorobenzidine	ND	0.020	1	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
2-Fluorophenol	54	25-121		

RL: Reporting Limit. DF: Dilution Factor. MDL

MDL: Method Detection Limit.

<i>Calscience</i> <i>nvironmental</i> <i>aboratories, Inc.</i>	Analytical F				
Freshwater Environmental Services	Dat		07/25/13		
78 Sunny Brae Center	Wa	Work Order:			
Arcata, CA 95521-6742	Pre	Preparation:			
	Me	Method:			
	Uni	Units:			
Project: Tire Fire Property				Page 6 of 24	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
Phenol-d6	63	24-113			
Nitrobenzene-d5	60	23-120			
2-Fluorobiphenyl	83	30-115			

19-122

18-137

78

118

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

2,4,6-Tribromophenol

p-Terphenyl-d14

alscience nvironmental aboratories, Inc.

Analytical	Report
------------	--------

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: Tire Fire Property		Page 7 of 24

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-3-(1.5')	13-07-1674-3-A	07/24/13 11:40	Soil	GC/MS CCC	07/29/13	08/01/13 00:21	130729L10
Parameter		<u>Result</u>		RL	DF	Qual	<u>ifiers</u>
Phenol		ND		0.020	1		
2-Chlorophenol		ND		0.020	1		
2-Methylphenol		ND		0.020	1		
3/4-Methylphenol		ND		0.020	1		
2-Nitrophenol		ND		0.020	1		
2,4-Dimethylphenol		ND		0.020	1		
2,4-Dichlorophenol		ND		0.020	1		
4-Chloro-3-Methylphenol		ND		0.020	1		
2,4-Dinitrophenol		ND		0.10	1		
4-Nitrophenol		ND		0.020	1		
4,6-Dinitro-2-Methylphenol		ND		0.10	1		
2,4,6-Trichlorophenol		ND		0.020	1		
2,4,5-Trichlorophenol		ND		0.020	1		
Pentachlorophenol		ND		0.020	1		
Dimethyl Phthalate		ND		0.010	1		
Diethyl Phthalate		ND		0.010	1		
Di-n-Butyl Phthalate		ND		0.010	1		
Butyl Benzyl Phthalate		ND		0.010	1		
Bis(2-Ethylhexyl) Phthalate		ND		0.010	1		
Di-n-Octyl Phthalate		ND		0.010	1		
Naphthalene		ND		0.020	1		
Acenaphthylene		ND		0.020	1		
Acenaphthene		ND		0.020	1		
Fluorene		ND		0.020	1		
Phenanthrene		ND		0.020	1		
Anthracene		ND		0.020	1		
Fluoranthene		ND		0.016	1		
Pyrene		ND		0.020	1		
Benzo (a) Anthracene		ND		0.020	1		
Chrysene		ND		0.020	1		
Benzo (k) Fluoranthene		ND		0.020	1		
Benzo (b) Fluoranthene		ND		0.020	1		
Benzo (a) Pyrene		ND		0.020	1		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1		
Dibenz (a,h) Anthracene		ND		0.020	1		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit. **Return to Contents**

Return to Contents

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Da	te Received:		07/25/13
78 Sunny Brae Center	W	ork Order:		13-07-1674
Arcata, CA 95521-6742	Pr	eparation:		EPA 3545
	Me	ethod:		EPA 8270C
	Ur	nits:		ma/ka
Project: Tire Fire Property	-			Page 8 of 24
Parameter	Result	RL	DF	Qualifiers
Benzo (g,h,i) Perylene	ND	0.020	1	
N-Nitrosodimethylamine	ND	0.020	1	
Aniline	ND	0.020	1	
Bis(2-Chloroethyl) Ether	ND	0.10	1	
1,3-Dichlorobenzene	ND	0.020	1	
1,4-Dichlorobenzene	ND	0.020	1	
Benzyl Alcohol	ND	0.020	1	
1,2-Dichlorobenzene	ND	0.020	1	
Bis(2-Chloroisopropyl) Ether	ND	0.020	1	
N-Nitroso-di-n-propylamine	ND	0.020	1	
Hexachloroethane	ND	0.020	1	
Nitrobenzene	ND	0.10	1	
Isophorone	ND	0.020	1	
Benzoic Acid	ND	0.10	1	
Bis(2-Chloroethoxy) Methane	ND	0.020	1	
1,2,4-Trichlorobenzene	ND	0.020	1	
4-Chloroaniline	ND	0.020	1	
Hexachloro-1,3-Butadiene	ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1	
1-Methylnaphthalene	ND	0.020	1	
Hexachlorocyclopentadiene	ND	0.020	1	
2-Chloronaphthalene	ND	0.020	1	
2-Nitroaniline	ND	0.020	1	
3-Nitroaniline	ND	0.020	1	
Dibenzofuran	ND	0.020	1	
2,4-Dinitrotoluene	ND	0.020	1	
2,6-Dinitrotoluene	ND	0.020	1	
4-Chlorophenyl-Phenyl Ether	ND	0.020	1	
4-Nitroaniline	ND	0.020	1	
Azobenzene	ND	0.020	1	
N-Nitrosodiphenylamine	ND	0.020	1	
4-Bromophenyl-Phenyl Ether	ND	0.020	1	
Hexachlorobenzene	ND	0.020	1	
Benzidine	ND	0.10	1	
Pyridine	ND	0.020	1	
3,3'-Dichlorobenzidine	ND	0.020	1	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
2-Fluorophenol	51	25-121		

<i>L</i> alscience <i>nvironmental</i> <i>aboratories, Inc.</i>	Analytical F				
Freshwater Environmental Services	Dat		07/25/13		
78 Sunny Brae Center	Wo	Work Order:			
Arcata, CA 95521-6742	Pre	Preparation:			
	Me	Method:			
	Uni	Units:			
Project: Tire Fire Property				Page 9 of 24	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
Phenol-d6	57	24-113			
Nitrobenzene-d5	62	23-120			
2-Fluorobiphenyl	83	30-115			

19-122

18-137

2,7

71

152

_

2,4,6-Tribromophenol

p-Terphenyl-d14

alscience nvironmental ratorias Inc

aboratories, inc.		
Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: Tire Fire Property		Page 10 of 24

Analytical Report

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-4-(1.0')	13-07-1674-4-A	07/24/13 11:20	Soil	GC/MS CCC	07/29/13	08/01/13 00:47	130729L10
Parameter		Result		RL	DF	Qual	ifiers
Phenol		ND		0.020	1		
2-Chlorophenol		ND		0.020	1		
2-Methylphenol		ND		0.020	1		
3/4-Methylphenol		ND		0.020	1		
2-Nitrophenol		ND		0.020	1		
2,4-Dimethylphenol		ND		0.020	1		
2,4-Dichlorophenol		ND		0.020	1		
4-Chloro-3-Methylphenol		ND		0.020	1		
2,4-Dinitrophenol		ND		0.10	1		
4-Nitrophenol		ND		0.020	1		
4,6-Dinitro-2-Methylphenol		ND		0.10	1		
2,4,6-Trichlorophenol		ND		0.020	1		
2,4,5-Trichlorophenol		ND		0.020	1		
Pentachlorophenol		ND		0.020	1		
Dimethyl Phthalate		ND		0.010	1		
Diethyl Phthalate		ND		0.010	1		
Di-n-Butyl Phthalate		ND		0.010	1		
Butyl Benzyl Phthalate		ND		0.010	1		
Bis(2-Ethylhexyl) Phthalate		ND		0.010	1		
Di-n-Octyl Phthalate		ND		0.010	1		
Naphthalene		ND		0.020	1		
Acenaphthylene		ND		0.020	1		
Acenaphthene		ND		0.020	1		
Fluorene		ND		0.020	1		
Phenanthrene		ND		0.020	1		
Anthracene		ND		0.020	1		
Fluoranthene		ND		0.016	1		
Pyrene		ND		0.020	1		
Benzo (a) Anthracene		ND		0.020	1		
Chrysene		ND		0.020	1		
Benzo (k) Fluoranthene		ND		0.020	1		
Benzo (b) Fluoranthene		ND		0.020	1		
Benzo (a) Pyrene		ND		0.020	1		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1		
Dibenz (a,h) Anthracene		ND		0.020	1		

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Date Re	ceived:		07/25/13		
78 Sunny Brae Center	Work O	Work Order:				
Arcata, CA 95521-6742	Prepara	tion:		EPA 3545		
	Method:		EPA 8270C			
	Units:			mg/kg		
Project: Tire Fire Property				Page 11 of 24		
Parameter	<u>Result</u>	RL	DF	<u>Qualifiers</u>		
Benzo (g,h,i) Perylene	ND	0.020	1			
N-Nitrosodimethylamine	ND	0.020	1			
Aniline	ND	0.020	1			
Bis(2-Chloroethyl) Ether	ND	0.10	1			
1,3-Dichlorobenzene	ND	0.020	1			
1,4-Dichlorobenzene	ND	0.020	1			
Benzyl Alcohol	ND	0.020	1			
1,2-Dichlorobenzene	ND	0.020	1			
Bis(2-Chloroisopropyl) Ether	ND	0.020	1			
N-Nitroso-di-n-propylamine	ND	0.020	1			
Hexachloroethane	ND	0.020	1			
Nitrobenzene	ND	0.10	1			
Isophorone	ND	0.020	1			
Benzoic Acid	ND	0.10	1			
Bis(2-Chioroethoxy) Methane	ND	0.020	1			
4 Chloroppilipp		0.020	1			
4-Chilorodanime		0.020	1			
2.Methylpaphthalene		0.020	1			
1-Methylnaphthalene		0.020	1			
Hexachlorocyclopentadiene	ND	0.020	1			
2-Chloronaphthalene	ND	0.020	1			
2-Nitroaniline	ND	0.020	1			
3-Nitroaniline	ND	0.020	1			
Dibenzofuran	ND	0.020	1			
2,4-Dinitrotoluene	ND	0.020	1			
2,6-Dinitrotoluene	ND	0.020	1			
4-Chlorophenyl-Phenyl Ether	ND	0.020	1			
4-Nitroaniline	ND	0.020	1			
Azobenzene	ND	0.020	1			
N-Nitrosodiphenylamine	ND	0.020	1			
4-Bromophenyl-Phenyl Ether	ND	0.020	1			
Hexachlorobenzene	ND	0.020	1			
Benzidine	ND	0.10	1			
Pyridine	ND	0.020	1			
3,3'-Dichlorobenzidine	ND	0.020	1			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
2-Fluorophenol	34	25-121				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

<i>E alscience</i> <i>nvironmental</i> <i>aboratories, Inc.</i>	Analytical R			
Freshwater Environmental Services	Dat		07/25/13	
78 Sunny Brae Center	Wo	rk Order:		13-07-1674
Arcata, CA 95521-6742	Pre	EPA 3545		
	Me	EPA 8270C		
	Uni	mg/kg		
Project: Tire Fire Property				Page 12 of 24
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers	
Phenol-d6	40	24-113		
Nitrobenzene-d5	39	23-120		
2-Fluorobiphenyl	48	30-115		

19-122

18-137

39

81

_

2,4,6-Tribromophenol

p-Terphenyl-d14

Return to Contents

Freshwater Environmental Services			Date Rec	eived:			07/25/13
78 Sunny Brae Center			Work Ord	er:			13-07-1674
Arcata, CA 95521-6742			Preparatio	on:			EPA 3545
			Method:				EPA 8270C
			Units:				ma/ka
Project: Tire Fire Property						Pag	e 13 of 24
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-6-(0.0'-0.1')	13-07-1674-5-A	07/24/13 11:51	Soil	GC/MS CCC	07/29/13	08/01/13 01:12	130729L10
Comment(s): - The sample volume received	ved was less than re	equired resultin	g in an eleva	ted reporting limit	•		
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	lifiers
Phenol		ND	C	0.16	7.92		
2-Chlorophenol		ND	C	0.16	7.92		
2-Methylphenol		ND	C	0.16	7.92		
3/4-Methylphenol		ND	C	0.16	7.92		
2-Nitrophenol		ND	C	0.16	7.92		
2,4-Dimethylphenol		ND	C	0.16	7.92		
2,4-Dichlorophenol		ND	C	0.16	7.92		
4-Chloro-3-Methylphenol		ND	C	0.16	7.92		
2,4-Dinitrophenol		ND	C	0.79	7.92		
4-Nitrophenol		ND	C	0.16	7.92		
4,6-Dinitro-2-Methylphenol		ND	C	0.79	7.92		
2,4,6-Trichlorophenol		ND	C	0.16	7.92		
2,4,5-Trichlorophenol		ND	C	0.16	7.92		
Pentachlorophenol		ND	C	0.16	7.92		
Dimethyl Phthalate		ND	C	0.079	7.92		
Diethyl Phthalate		ND	C	0.079	7.92		
Di-n-Butyl Phthalate		ND	C	0.079	7.92		
Butyl Benzyl Phthalate		0.23	C	0.079	7.92		
Bis(2-Ethylhexyl) Phthalate		0.16	C	0.079	7.92		
Di-n-Octyl Phthalate		ND	C	0.079	7.92		
Naphthalene		ND	C	0.16	7.92		
Acenaphthylene		ND	C	0.16	7.92		
Acenaphthene		ND	C	0.16	7.92		
Fluorene		ND	C	0.16	7.92		
Phenanthrene		ND	C	0.16	7.92		
Anthracene		ND	C	0.16	7.92		
Fluoranthene		ND	C	0.13	7.92		
Pyrene		ND	C	0.16	7.92		
Benzo (a) Anthracene		ND	C	0.16	7.92		
Chrysene		ND	C	0.16	7.92		
Benzo (k) Fluoranthene		ND	C	0.16	7.92		
Benzo (b) Fluoranthene		ND	C	0.16	7.92		
Benzo (a) Pyrene		ND	C	0.16	7.92		
Indeno (1,2,3-c,d) Pyrene		ND	C	0.16	7.92		

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Da	ate Received:		07/25/13		
78 Sunny Brae Center	W	ork Order:		13-07-167		
Arcata CA 95521-6742	Pr		EPA 3545			
, iouiu, 01100021 01 12	M	ethod:		EPA 82700		
	10	oito:				
Project: Tire Fire Property	U			Dage 14 of 24		
				Fage 14 01 24		
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qualifiers</u>		
Dibenz (a,h) Anthracene	ND	0.16	7.92			
Benzo (g,h,i) Perylene	ND	0.16	7.92			
N-Nitrosodimethylamine	ND	0.16	7.92			
Aniline	ND	0.16	7.92			
Bis(2-Chloroethyl) Ether	ND	0.79	7.92			
1,3-Dichlorobenzene	ND	0.16	7.92			
1,4-Dichlorobenzene	ND	0.16	7.92			
Benzyl Alcohol	ND	0.16	7.92			
1,2-Dichlorobenzene	ND	0.16	7.92			
Bis(2-Chloroisopropyl) Ether	ND	0.16	7.92			
N-Nitroso-di-n-propylamine	ND	0.16	7.92			
Hexachloroethane	ND	0.16	7.92			
Nitrobenzene	ND	0.79	7.92			
Isophorone	ND	0.16	7.92			
Benzoic Acid	ND	0.79	7.92			
Bis(2-Chloroethoxy) Methane	ND	0.16	7.92			
1,2,4-Trichlorobenzene	ND	0.16	7.92			
4-Chloroaniline	ND	0.16	7.92			
Hexachloro-1,3-Butadiene	ND	0.16	7.92			
2-Methylnaphthalene	ND	0.16	7.92			
1-Methylnaphthalene	ND	0.16	7.92			
Hexachlorocyclopentadiene	ND	0.16	7.92			
2-Chloronaphthalene	ND	0.16	7.92			
2-Nitroaniline	ND	0.16	7.92			
3-Nitroaniline	ND	0.16	7.92			
Dibenzofuran	ND	0.16	7.92			
2,4-Dinitrotoluene	ND	0.16	7.92			
2,6-Dinitrotoluene	ND	0.16	7.92			
4-Chlorophenyl-Phenyl Ether	ND	0.16	7.92			
4-Nitroaniline	ND	0.16	7.92			
Azobenzene	ND	0.16	7.92			
N-Nitrosodiphenylamine	ND	0.16	7.92			
4-Bromophenyl-Phenyl Ether	ND	0.16	7.92			
Hexachlorobenzene	ND	0.16	7.92			
Benzidine	ND	0.79	7.92			
Pyridine	ND	0.16	7.92			
3,3'-Dichlorobenzidine	ND	0.16	7.92			

<i>E alscience nvironmental L aboratories, Inc.</i>	Analytical Report						
Freshwater Environmental Services	Dat	e Received:		07/25/13			
78 Sunny Brae Center	Wo	rk Order:		13-07-1674			
Arcata, CA 95521-6742	Pre	Preparation:					
	Me		EPA 8270C				
	Uni	mg/kg					
Project: Tire Fire Property				Page 15 of 24			
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers				
2-Fluorophenol	86	25-121					
Phenol-d6	75	24-113					
Nitrobenzene-d5	95	23-120					
2-Fluorobiphenyl	96	30-115					

19-122

18-137

1,2,7

89

223

_

2,4,6-Tribromophenol

p-Terphenyl-d14

Page 28 of 52

Freshwater Environmental Services	5		Date Rece	ived:			07/25/13
78 Sunny Brae Center			Work Orde	er:			13-07-1674
Arcata, CA 95521-6742			Preparatio	n:			EPA 3545
			Method:				EPA 8270C
			Units:				mg/kg
Project: Tire Fire Property						Pag	e 16 of 24
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-7-(0.0'-0.1')	13-07-1674-6-A	07/24/13 12:05	Soil	GC/MS CCC	07/29/13	08/01/13 01:39	130729L10
Comment(s): - The sample volume rece	ived was less than re	equired resulting	g in an elevat	ed reporting limit	t.		
Parameter		<u>Result</u>	<u>RI</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Phenol		ND	0.	20	10		
2-Chlorophenol		ND	0.	20	10		
2-Methylphenol		ND	0.	20	10		
3/4-Methylphenol		ND	0.	20	10		
2-Nitrophenol		ND	0.	20	10		
2,4-Dimethylphenol		ND	0.	20	10		
2,4-Dichlorophenol		ND	0.	20	10		
4-Chloro-3-Methylphenol		ND	0.	20	10		
2,4-Dinitrophenol		ND	1.	0	10		
4-Nitrophenol		ND	0.	20	10		
4,6-Dinitro-2-Methylphenol		ND	1.	0	10		
2,4,6-Trichlorophenol		ND	0.	20	10		
2,4,5-Trichlorophenol		ND	0.	20	10		
Pentachlorophenol		ND	0.	20	10		
Dimethyl Phthalate		ND	0.	10	10		
Diethyl Phthalate		ND	0.	10	10		
Di-n-Butyl Phthalate		ND	0.	10	10		
Butyl Benzyl Phthalate		ND	0.	10	10		
Bis(2-Ethylhexyl) Phthalate		0.27	0.	10	10		
Di-n-Octyl Phthalate		ND	0.	10	10		
Naphthalene		ND	0.	20	10		
Acenaphthylene		ND	0.	20	10		
Acenaphthene		ND	0.	20	10		
Fluorene		ND	0.	20	10		
Phenanthrene		ND	0.	20	10		
Anthracene		ND	0.	20	10		
Fluoranthene		ND	0.	16	10		
Pyrene		ND	0.	20	10		
Benzo (a) Anthracene		ND	0.	20	10		
Chrysene		ND	0.	20	10		
Benzo (k) Fluoranthene		ND	0.	20	10		
Benzo (b) Fluoranthene		ND	0.	20	10		
Benzo (a) Pyrene		ND	0.	20	10		
Indeno (1,2,3-c,d) Pyrene		ND	0.	20	10		

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Da	07/25/13		
78 Sunny Brae Center	Sunny Brae Center Work Order:			13-07-1674
Arcata. CA 95521-6742	Pr		EPA 3545	
	M	ethod.		EPA 8270C
	l Ir	nite:		ma/ka
Project: Tire Fire Property				Page 17 of 24
	Denul		55	Qualifian
Parameter	Result	<u>RL</u>	<u>DF</u> 10	Qualifiers
Dibenz (a,n) Anthracene	ND	0.20	10	
Benzo (g,n,i) Perviene	ND	0.20	10	
	ND	0.20	10	
	ND	0.20	10	
Bis(2-Chioroethyi) Ether	ND	1.0	10	
1,3-Dichlorobenzene	ND	0.20	10	
1,4-Dichlorobenzene	ND	0.20	10	
Benzyl Alcohol	ND	0.20	10	
1,2-Dichlorobenzene	ND	0.20	10	
Bis(2-Chloroisopropyl) Ether	ND	0.20	10	
N-Nitroso-di-n-propylamine	ND	0.20	10	
Hexachloroethane	ND	0.20	10	
Nitrobenzene	ND	1.0	10	
Isophorone	ND	0.20	10	
Benzoic Acid	ND	1.0	10	
Bis(2-Chloroethoxy) Methane	ND	0.20	10	
1,2,4-Trichlorobenzene	ND	0.20	10	
4-Chloroaniline	ND	0.20	10	
Hexachloro-1,3-Butadiene	ND	0.20	10	
2-Methylnaphthalene	ND	0.20	10	
1-Methylnaphthalene	ND	0.20	10	
Hexachlorocyclopentadiene	ND	0.20	10	
2-Chloronaphthalene	ND	0.20	10	
2-Nitroaniline	ND	0.20	10	
3-Nitroaniline	ND	0.20	10	
Dibenzofuran	ND	0.20	10	
2,4-Dinitrotoluene	ND	0.20	10	
2,6-Dinitrotoluene	ND	0.20	10	
4-Chlorophenyl-Phenyl Ether	ND	0.20	10	
4-Nitroaniline	ND	0.20	10	
Azobenzene	ND	0.20	10	
N-Nitrosodiphenylamine	ND	0.20	10	
4-Bromophenyl-Phenyl Ether	ND	0.20	10	
Hexachlorobenzene	ND	0.20	10	
Benzidine	ND	1.0	10	
Pyridine	ND	0.20	10	
- 3,3'-Dichlorobenzidine	ND	0.20	10	
		-	-	

<i>alscience</i> <i>nvironmental</i> <i>aboratories, Inc.</i>	Analytical Report					
Freshwater Environmental Services	Dat	Date Received:				
78 Sunny Brae Center	Wo	rk Order:		13-07-1674		
Arcata, CA 95521-6742	Pre		EPA 3545			
	Me		EPA 8270C			
	Uni		mg/kg			
Project: Tire Fire Property				Page 18 of 24		
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers			
2-Fluorophenol	60	25-121				
Phenol-d6	67	24-113				
Nitrobenzene-d5	83	23-120				
2-Fluorobiphenyl	98	30-115				

19-122

18-137

1,2,7

87

198

_

2,4,6-Tribromophenol

p-Terphenyl-d14

Return to Contents

alscience nvironmental aboratories, Inc.

Analytical	Report
------------	--------

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: Tire Fire Property		Page 19 of 24

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Tire-Fire-8-(1.3')	13-07-1674-7-A	07/24/13 11:50	Soil	GC/MS CCC	07/29/13	08/01/13 02:05	130729L10
Parameter		Result		RL	DF	Qua	lifiers
Phenol		ND		0.020	1		
2-Chlorophenol		ND		0.020	1		
2-Methylphenol		ND		0.020	1		
3/4-Methylphenol		ND		0.020	1		
2-Nitrophenol		ND		0.020	1		
2,4-Dimethylphenol		ND		0.020	1		
2,4-Dichlorophenol		ND		0.020	1		
4-Chloro-3-Methylphenol		ND		0.020	1		
2,4-Dinitrophenol		ND		0.10	1		
4-Nitrophenol		ND		0.020	1		
4,6-Dinitro-2-Methylphenol		ND		0.10	1		
2,4,6-Trichlorophenol		ND		0.020	1		
2,4,5-Trichlorophenol		ND		0.020	1		
Pentachlorophenol		ND		0.020	1		
Dimethyl Phthalate		ND		0.010	1		
Diethyl Phthalate		ND		0.010	1		
Di-n-Butyl Phthalate		ND		0.010	1		
Butyl Benzyl Phthalate		ND		0.010	1		
Bis(2-Ethylhexyl) Phthalate		ND		0.010	1		
Di-n-Octyl Phthalate		ND		0.010	1		
Naphthalene		ND		0.020	1		
Acenaphthylene		ND		0.020	1		
Acenaphthene		ND		0.020	1		
Fluorene		ND		0.020	1		
Phenanthrene		ND		0.020	1		
Anthracene		ND		0.020	1		
Fluoranthene		ND		0.016	1		
Pyrene		ND		0.020	1		
Benzo (a) Anthracene		ND		0.020	1		
Chrysene		ND		0.020	1		
Benzo (k) Fluoranthene		ND		0.020	1		
Benzo (b) Fluoranthene		ND		0.020	1		
Benzo (a) Pyrene		ND		0.020	1		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1		
Dibenz (a,h) Anthracene		ND		0.020	1		
Return to Contents

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Da	ate Received:		07/25/13
78 Sunny Brae Center	W	ork Order:	13-07-1674	
Arcata, CA 95521-6742	Pr	eparation:		EPA 3545
	Me	ethod:		EPA 8270C
	Ur	nits:		ma/ka
Project: Tire Fire Property				Page 20 of 24
Parameter	<u>Result</u>	<u>RL</u>	DF	Qualifiers
Benzo (g,h,i) Perylene	ND	0.020	1	
N-Nitrosodimethylamine	ND	0.020	1	
Aniline	ND	0.020	1	
Bis(2-Chloroethyl) Ether	ND	0.10	1	
1,3-Dichlorobenzene	ND	0.020	1	
1,4-Dichlorobenzene	ND	0.020	1	
Benzyl Alcohol	ND	0.020	1	
1,2-Dichlorobenzene	ND	0.020	1	
Bis(2-Chloroisopropyl) Ether	ND	0.020	1	
N-Nitroso-di-n-propylamine	ND	0.020	1	
Hexachloroethane	ND	0.020	1	
Nitrobenzene	ND	0.10	1	
Isophorone	ND	0.020	1	
Benzoic Acid	ND	0.10	1	
Bis(2-Chloroethoxy) Methane	ND	0.020	1	
1,2,4-Trichlorobenzene	ND	0.020	1	
4-Chloroaniline	ND	0.020	1	
Hexachloro-1,3-Butadiene	ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1	
1-Methylnaphthalene	ND	0.020	1	
Hexachlorocyclopentadiene	ND	0.020	1	
2-Chloronaphthalene	ND	0.020	1	
2-Nitroaniline	ND	0.020	1	
3-Nitroaniline	ND	0.020	1	
Dibenzofuran	ND	0.020	1	
2,4-Dinitrotoluene	ND	0.020	1	
2,6-Dinitrotoluene	ND	0.020	1	
4-Chlorophenyl-Phenyl Ether	ND	0.020	1	
4-Nitroaniline	ND	0.020	1	
Azobenzene	ND	0.020	1	
N-Nitrosodiphenylamine	ND	0.020	1	
4-Bromophenyi-Phenyi Ether	ND	0.020	1	
Hexachlorobenzene	ND	0.020	1	
Derizione		0.10	1	
	ND	0.020	1	
3,3 - Jichlorobenziaine	ND	0.020	1	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	Qualifiers	
2-Fluorophenol	58	25-121		

RL: Reporting Limit. DF: Dilution Factor. MDL: Me

MDL: Method Detection Limit.

<i>L</i> alscience <i>nvironmental</i> <i>aboratories, Inc.</i>	Analytical R	eport			
Freshwater Environmental Services	Dat	e Received:		07/25/13	
78 Sunny Brae Center	Wo	rk Order:		13-07-1674	
Arcata, CA 95521-6742	Pre		EPA 3545		
	Me	thod:		EPA 8270C	
	Uni	ts:		mg/kg	
Project: Tire Fire Property				Page 21 of 24	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
Phenol-d6	60	24-113			
Nitrobenzene-d5	66	23-120			
2-Fluorobiphenyl	87	30-115			
2,4,6-Tribromophenol	67	19-122			

18-137

2,7

215

_

p-Terphenyl-d14

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

alscience nvironmental aboratories, Inc.

Ana	vtical	Report
/a	y u oai	1 COPOIL

Date Received:	07/25/13
Work Order:	13-07-1674
Preparation:	EPA 3545
Method:	EPA 8270C
Units:	mg/kg
	Page 22 of 24
	Date Received: Work Order: Preparation: Method: Units:

Project: Tire Fire Property

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-009-94	N/A	Soil	GC/MS CCC	07/29/13	07/31/13 16:25	130729L10
Parameter		Result		RL	DF	Qua	lifiers
Phenol		ND		0.020	1		
2-Chlorophenol		ND		0.020	1		
2-Methylphenol		ND		0.020	1		
3/4-Methylphenol		ND		0.020	1		
2-Nitrophenol		ND		0.020	1		
2,4-Dimethylphenol		ND		0.020	1		
2,4-Dichlorophenol		ND		0.020	1		
4-Chloro-3-Methylphenol		ND		0.020	1		
2,4-Dinitrophenol		ND		0.10	1		
4-Nitrophenol		ND		0.020	1		
4,6-Dinitro-2-Methylphenol		ND		0.10	1		
2,4,6-Trichlorophenol		ND		0.020	1		
2,4,5-Trichlorophenol		ND		0.020	1		
Pentachlorophenol		ND		0.020	1		
Dimethyl Phthalate		ND		0.010	1		
Diethyl Phthalate		ND		0.010	1		
Di-n-Butyl Phthalate		ND		0.010	1		
Butyl Benzyl Phthalate		ND		0.010	1		
Bis(2-Ethylhexyl) Phthalate		ND		0.010	1		
Di-n-Octyl Phthalate		ND		0.010	1		
Naphthalene		ND		0.020	1		
Acenaphthylene		ND		0.020	1		
Acenaphthene		ND		0.020	1		
Fluorene		ND		0.020	1		
Phenanthrene		ND		0.020	1		
Anthracene		ND		0.020	1		
Fluoranthene		ND		0.016	1		
Pyrene		ND		0.020	1		
Benzo (a) Anthracene		ND		0.020	1		
Chrysene		ND		0.020	1		
Benzo (k) Fluoranthene		ND		0.020	1		
Benzo (b) Fluoranthene		ND		0.020	1		
Benzo (a) Pyrene		ND		0.020	1		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1		
Dibenz (a,h) Anthracene		ND		0.020	1		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Da	ate Received:		07/25/13
78 Sunny Brae Center	W	ork Order:		13-07-1674
Arcata, CA 95521-6742	Pr	eparation:		EPA 3545
,	Me	ethod:		EPA 8270C
	Ur	nits:		ma/ka
Project: Tire Fire Property				Page 23 of 24
Parameter	<u>Result</u>	<u>RL</u>	DF	Qualifiers
Benzo (g,h,i) Perylene	ND	0.020	1	
N-Nitrosodimethylamine	ND	0.020	1	
Aniline	ND	0.020	1	
Bis(2-Chloroethyl) Ether	ND	0.10	1	
1,3-Dichlorobenzene	ND	0.020	1	
1,4-Dichlorobenzene	ND	0.020	1	
Benzyl Alcohol	ND	0.020	1	
1,2-Dichlorobenzene	ND	0.020	1	
Bis(2-Chloroisopropyl) Ether	ND	0.020	1	
N-Nitroso-di-n-propylamine	ND	0.020	1	
Hexachloroethane	ND	0.020	1	
Nitrobenzene	ND	0.10	1	
Isophorone	ND	0.020	1	
Benzoic Acid	ND	0.10	1	
Bis(2-Chloroethoxy) Methane	ND	0.020	1	
1,2,4-Trichlorobenzene	ND	0.020	1	
4-Chloroaniline	ND	0.020	1	
Hexachloro-1,3-Butadiene	ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1	
	ND	0.020	1	
Hexachlorocyclopentadiene	ND	0.020	1	
	ND	0.020	1	
2-Nitroaniline	ND	0.020	1	
3-Nitroaniline	ND	0.020	1	
Dibenzoruran	ND	0.020	1	
2,4-Dinitrotoluono		0.020	1	
2,0-Dimitrolouene		0.020	1	
		0.020	1	
	ND	0.020	1	
N-Nitrosodinhenylamine	ND	0.020	1	
4-Bromonhenyl-Phenyl Ether	ND	0.020	1	
Hexachlorobenzene	ND	0.020	1	
Benzidine	ND	0.10	1	
Pvridine	ND	0.020	1	
3,3'-Dichlorobenzidine	ND	0.020	1	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
2-Fluorophenol	67	25-121		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

<i>Lalscience</i> <i>nvironmental</i> <i>aboratories, Inc.</i>	Analytical F	Report				
Freshwater Environmental Services	Dat	te Received:		07/25/13		
78 Sunny Brae Center	Wa	Work Order:				
Arcata, CA 95521-6742	Pre	Preparation:				
	Me	thod:		EPA 8270C		
	Uni	ts:		mg/kg		
Project: Tire Fire Property				Page 24 of 24		
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers			
Phenol-d6	70	24-113				
Nitrobenzene-d5	64	23-120				
2-Fluorobiphenyl	68	30-115				

19-122

18-137

85

77

_

2,4,6-Tribromophenol

p-Terphenyl-d14

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3550B
	Method:	EPA 8015B
Project: Tire Fire Property		Page 1 of 5

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	MSD Batch	Number
Tire-Fire-3-(1.5')		Soil		GC 45	07/29/1	13	07/30/13 15:26	130	729S13	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Diesel Range Organics	12.87	400.0	468.9	114	449.1	109	64-130	4	0-15	

RPD: Relative Percent Difference. CL: Control Limits

Freshwater Environmental Services		Date Re	eceived:		07/25/13	
78 Sunny Brae Center		Work O	rder:	13-07-1674		
Arcata, CA 95521-6742		Prepara	ation:	EPA 35508		
		Method	:		EPA 8015B (M)	
Project: Tire Fire Property					Page 2 of 5	
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number	

Tire-Fire-3-(1.5')		Soil	G	GC 45	07/29/	13	07/30/13 16:01	130	729S14	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	MSD Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Motor Oil	81.30	400.0	426.1	86	435.6	89	64-130	2	0-15	

RPD: Relative Percent Difference. CL: Control Limits

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3050B
	Method:	EPA 6020
Project: Tire Fire Property		Page 3 of 5

Project: Tire Fire Property

Quality Control Sample ID		Matrix		Instrument	Date Pre	pared	Date Analyzed	MS/	MSD Batch	Number
Tire-Fire-3-(1.5')		Soil		ICP/MS 03	07/26/13		07/29/13 12:27	130	726S04A	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Arsenic	ND	25.00	23.42	94	22.44	90	72-132	4	0-13	
Barium	12.15	25.00	38.29	105	39.92	111	50-152	4	0-41	
Cadmium	ND	25.00	25.34	101	25.00	100	85-121	1	0-12	
Chromium	12.25	25.00	40.21	112	40.41	113	20-182	1	0-15	
Cobalt	14.39	25.00	40.38	104	40.58	105	40-166	0	0-14	
Copper	203.9	25.00	236.5	4X	255.3	4X	25-157	4X	0-22	Q
Lead	ND	25.00	26.67	107	27.33	109	62-134	2	0-23	
Nickel	28.28	25.00	57.35	116	57.35	116	46-154	0	0-15	
Vanadium	41.05	25.00	71.34	121	81.49	162	28-178	13	0-28	
Zinc	55.11	25.00	92.37	149	96.98	167	23-173	5	0-18	
Aluminum	11820	25.00	13630	4X	15900	4X	80-120	4X	0-20	Q
Magnesium	12380	25.00	14670	4X	17110	4X	80-120	4X	0-20	Q
Manganese	357.9	25.00	404.5	4X	457.2	4X	80-120	4X	0-20	Q

Freshwater Environmental Services		Date Re	eceived:		07/25/13	
78 Sunny Brae Center		Work O	rder:	13-07-1674		
Arcata, CA 95521-6742		Prepara	ation:	EPA 7471A Total		
		Method	:		EPA 7471A	
Project: Tire Fire Property					Page 4 of 5	
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number	

Quality Control Sample ID		Matrix		Instrument	Date Pr	repared	Date Analyzed	MS/MSD Bat	ch Number
Tire-Fire-3-(1.5')		Soil		Mercury	07/29/1	3	07/29/13 12:52	130729S01	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	RPD RPD CL	<u>Qualifiers</u>
Mercury	ND	0.8350	0.8812	106	0.8850	106	71-137	0 0-14	

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3545
	Method:	EPA 8270C
Project: Tire Fire Property		Page 5 of 5

Project: Tire Fire Property

Quality Control Sample ID		Matrix	Ins	strument	Date Pre	pared	Date Analyzed	MS/	MSD Batch	Number
Tire-Fire-3-(1.5')		Soil	G	C/MS CCC	07/29/13		08/01/13 02:31	130	729S10	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Phenol	ND	0.4000	0.2256	56	0.2389	60	48-114	6	0-18	
2-Chlorophenol	ND	0.4000	0.2616	65	0.2707	68	45-111	3	0-18	
4-Chloro-3-Methylphenol	ND	0.4000	0.2461	62	0.2591	65	52-124	5	0-17	
4-Nitrophenol	ND	0.4000	0.09139	23	0.1187	30	40-130	26	0-20	3,4
Pentachlorophenol	ND	0.4000	0.1035	26	0.1255	31	19-127	19	0-48	
Acenaphthene	ND	0.4000	0.2864	72	0.2959	74	49-121	3	0-20	
Pyrene	ND	0.4000	0.5387	135	0.5742	144	18-168	6	0-22	

RPD: Relative Percent Difference. CL: Control Limits

Return to Contents

Calscience nvironmental Laboratories, Inc.

Quality	Control -	- PDS/PDSD
---------	------------------	------------

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3050B
	Method:	EPA 6020
Project: Tire Fire Property		Page 1 of 1

Project: Tire Fire Property

Quality Control Sample ID		Matr	ix	Instrument	D	ate Prepared	Date Analy	/zed	PDS/PDSD Bate	ch Number
Tire-Fire-3-(1.5')		Soil		ICP/MS 03	6 0 7	7/26/13 00:00	07/29/13 1	2:34	130726S04A	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>PDS</u> Conc.	<u>PDS</u> <u>%Rec.</u>	<u>PDSD</u> Conc.	<u>PDSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Arsenic	ND	25.00	24.20	97	23.06	92	75-125	5	0-20	
Barium	12.15	25.00	39.00	107	38.95	107	75-125	0	0-20	
Cadmium	ND	25.00	25.68	103	25.17	101	75-125	2	0-20	
Chromium	12.25	25.00	37.08	99	35.63	94	75-125	4	0-20	
Cobalt	14.39	25.00	37.22	91	39.00	98	75-125	5	0-20	
Copper	203.9	25.00	222.1	4X	221.5	4X	75-125	4X	0-20	Q
Lead	ND	25.00	26.39	106	26.09	104	75-125	1	0-20	
Nickel	28.28	25.00	51.27	92	52.41	97	75-125	2	0-20	
Vanadium	41.05	25.00	65.22	97	67.28	105	75-125	3	0-20	
Zinc	55.11	25.00	78.15	92	77.85	91	75-125	0	0-20	
Aluminum	11820	25.00	11880	4X	11890	4X	75-125	4X	0-20	Q
Magnesium	12380	25.00	12530	4X	12640	4X	75-125	4X	0-20	Q
Manganese	357.9	25.00	350.7	4X	378.2	4X	75-125	4X	0-20	Q

<i>alscience</i> <i>nvironmental</i> <i>aboratories, Inc.</i>	Quality Co	ntrol - LCS		
Freshwater Environmental Services		Date Received:		07/25/13
78 Sunny Brae Center		Work Order:		13-07-1674
Arcata, CA 95521-6742		Preparation:		EPA 3550B
		Method:		EPA 8015B
Project: Tire Fire Property				Page 1 of 5
Quality Control Sample ID	Matrix	Instrument	Date Analyzed	LCS Batch Number
099-15-414-258	Soil	GC 45	07/30/13 14:50	130729B13

463.5

Conc. Recovered LCS %Rec.

116

Spike Added

400.0

Parameter

Diesel Range Organics

Qualifiers

<u>%Rec. CL</u>

75-123

<i>alscience</i> <i>nvironmental</i> <i>aboratories, Inc.</i>	Quality C	ontrol - LCS		
Freshwater Environmental Services		Date Received:		07/25/13
78 Sunny Brae Center		Work Order:		13-07-1674
Arcata, CA 95521-6742		Preparation:		EPA 3550B
		Method:		EPA 8015B (M)
Project: Tire Fire Property				Page 2 of 5
Quality Control Sample ID	Matrix	Instrument	Date Analyzed	LCS Batch Number

Quality Control Sample ID	Matrix	Instrument	Date Analyz	ed	LCS Batch	Number
099-15-420-526	Soil	GC 45	07/30/13 15	:08	130729B14	•
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	<u>CL</u>	Qualifiers
TPH as Motor Oil	400.0	359.0	90	75-123		

Page 44 of 52

RPD: Relative Percent Difference. CL: Control Limits

_

Return to Contents

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3050B
	Method:	EPA 6020
Project: Tire Fire Property		Page 3 of 5

Quality Control - LCS

Project: Tire Fire Property

Quality Control Sample ID	Matrix	(Instrument	Date Analyzed	LCS Batch N	umber
099-15-621-269	Soil		ICP/MS 03	07/29/13 16:32	130726L04E	
Parameter	Spike Added	<u>Conc.</u> Recovered	LCS %Rec.	<u>%Rec. CL</u>	ME CL	<u>Qualifiers</u>
Arsenic	25.00	26.56	106	80-120	73-127	
Barium	25.00	26.00	104	80-120	73-127	
Cadmium	25.00	25.08	100	80-120	73-127	
Chromium	25.00	26.23	105	80-120	73-127	
Cobalt	25.00	25.49	102	80-120	73-127	
Copper	25.00	27.31	109	80-120	73-127	
Lead	25.00	25.30	101	80-120	73-127	
Nickel	25.00	26.10	104	80-120	73-127	
Vanadium	25.00	24.10	96	80-120	73-127	
Zinc	25.00	28.01	112	80-120	73-127	
Aluminum	25.00	23.72	95	80-120	73-127	
Magnesium	25.00	23.60	94	80-120	73-127	
Manganese	25.00	24.27	97	80-120	73-127	

Total number of LCS compounds: 13

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

<i>Calscience</i> <i>nvironmental</i> <i>Laboratories, Inc.</i>	Quality C	ontrol - LCS		
Freshwater Environmental Services		Date Received:		07/25/13
78 Sunny Brae Center		Work Order:		13-07-1674
Arcata, CA 95521-6742		Preparation:		EPA 7471A Total
		Method:		EPA 7471A
Project: Tire Fire Property				Page 4 of 5
Quality Control Sample ID	Matrix	Instrument	Date Analyzed	LCS Batch Number

Quality Control Sample ID	Matrix	Instrument	Date Ana	alyzed	LCS Batch Number
099-04-007-9486	Soil	Mercury	07/29/13	12:48	130729L01
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. (</u>	CL Qualifiers
Mercury	0.8350	0.8577	103	85-121	

Page 46 of 52

RPD: Relative Percent Difference. CL: Control Limits

Return to Contents

Calscience nvironmental Laboratories, Inc.

Freshwater Environmental Services	Date Received:	07/25/13
78 Sunny Brae Center	Work Order:	13-07-1674
Arcata, CA 95521-6742	Preparation:	EPA 3545
	Method:	EPA 8270C
Project: Tire Fire Property		Page 5 of 5

Quality Control - LCS

Project: Tire Fire Property

Quality Control Sample ID	Matrix	Instrument	Date Analyz	ed	LCS Batch Number
097-01-009-94	Soil	GC/MS CCC	08/01/13 12	:46	130729L10
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec.</u>	CL Qualifiers
Phenol	0.4000	0.2740	69	58-112	
2-Chlorophenol	0.4000	0.2978	74	59-107	
4-Chloro-3-Methylphenol	0.4000	0.3197	80	58-124	
4-Nitrophenol	0.4000	0.2501	63	44-134	
Pentachlorophenol	0.4000	0.2386	60	24-138	
Acenaphthene	0.4000	0.3292	82	55-121	
Pyrene	0.4000	0.3377	84	45-129	

Page 1 of 1

Work Order: 13-07-1674

Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6020	EPA 3050B	598	ICP/MS 03	1
EPA 7471A	EPA 7471A Total	769	Mercury	1
EPA 8015B	EPA 3550B	682	GC 45	1
EPA 8015B (M)	EPA 3550B	682	GC 45	1
EPA 8270C	EPA 3545	513	GC/MS CCC	1

Return to Contents

alscience nvironmental aboratories, Inc.

Work Order: 13-07-1674

ork Order:	13-07-1674	Page 1 of 1
<u>Qualifiers</u>	Definition	
*	See applicable analysis comment.	
<	Less than the indicated value.	
>	Greater than the indicated value.	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample clarification.	data was reported without further
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank in control and, therefore, the sample data was reported without further clarification.	surrogate spike compound was
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to su associated LCS recovery was in control.	spected matrix interference. The
4	The MS/MSD RPD was out of control due to suspected matrix interference.	
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected n	natrix interference.
6	Surrogate recovery below the acceptance limit.	
7	Surrogate recovery above the acceptance limit.	
В	Analyte was present in the associated method blank.	
BU	Sample analyzed after holding time expired.	
BV	Sample received after holding time expired.	
Е	Concentration exceeds the calibration range.	
ET	Sample was extracted past end of recommended max. holding time.	
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.	
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standa were also present (or detected).	rd but heavier hydrocarbons
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standa also present (or detected).	rd but lighter hydrocarbons were
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection estimated.	on limit. Reported value is
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mea	n).
ND	Parameter not detected at the indicated reporting limit.	
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the samp concentration by a factor of four or greater.	le exceeding the spike
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.	

Glossary of Terms and Qualifiers

- Х % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

	lscience nvironmental	7440 LINCO GARDEN GI	LN WAY ROVE, CA 92	2841-1427						#//LAB1	JSE ON	ILY				Ĺ	DATE:	СН	AIN	OF	CU	IST()7/24/1)DY 3	' RE	col	RD
	aboratories, Inc.	TEL: (714) 8	95-5494 . FA	X: (714) 89	4-7501					15	-16		b	4		Р	AGE:			1	****	OF	Riderofilmikonessiti	1	ninakainakaanaa	NIÓNIIIIINNIÓNIÓ
LABOR	ATORY CLIENT: Freshwater I	Environmental Se	rvices						CLIEI	NT PRC	JECT N	IAME / N	IUMBER							P.O. I	NO.:			enningen freitrentlichen de		
ADDRE	SS: 78 Suppy Brog Contor		******	****				ninga ang pangana kalapa	Tire	e Fire	Prope	erty													******	
CITY				STATE	710	-			PRO	JECT C	ONTAC	T:								SAM	PLER(S)): (PRINT)			
	Arcata				CA	9552	1		Sta	an Thie	esen	201201-00100102						-		Orr	rin Plo	cher				
TEL:	707 839-0091	E-MAIL: stan	@freshwater	environment	alservices.c	com				•					REG	UES	STE) AN	IALY	'SES	5					and a second
TURNA	ROUND TIME:								а С		ľ						00000000000000000000000000000000000000									
	AME DAY 24 HR I GLOBAL ID:	□ 48 HR □ 7	72 HR 🛛	5 DAYS	🗵 10 DA	YS LOG	CODE:	*****	n silic																	
	OELT EDF	NA					NA) witl												· .					
Low Plea Silic Met	rest detection limits for SV ase homogenize samples as Gel Cleanup for TPH-D/ als Include: aluminum, ars per, lead, magnesium, ma	OCs. prior to analysis MO senic, barium, ca nganese, mercu	admium, ch ury, nickel, v	romium, co vanadium a	balt, ind zinc.	served	rved	Filtered	D/MO (EPA 8015	Cs (8270)	S		/MSD													
USE	SAMPLE ID	DATE		MATRIX	OF	Unpre	Prese	Field F	TPH-	SVO	Meta		NS													
	Tire-Fire-1-(1.2')	7/24/2013	10:30	Soil	1	1				x																
$\overline{\gamma}$	Tire-Fire-2-(1.3')	7/24/2013	11:00	Soil	1	1				x																
2	Tire-Fire-3-(1.5')	7/24/2013	11:40	Soil	2	2			x	x	x		x													
4	Tire-Fire-4-(1.0')	7/24/2013	11:20	Soil	1	1			x	x		<u> </u>							<u> </u>							
E	Tire-Fire-6-(0.0'-0.1')	7/24/2013	11:51	Soil	1	1			x	x	x								<u> </u>							
$\overline{\tilde{I}}$	Tire-Fire-7-(0.0'-0.1')	7/24/2013	12:05	Soil	1	1			x	x	x															
3	Tire-Fire-8-(1.3')	7/24/2013	11:50	Soil	1	1			X	x	x															
1	Temp Blank	7/24/2013		Water	1	1						l														
		· ·										<u> </u>														
																· · ·					 					
Relinqu	uished by: (Signature)	och	T	FE3	Rece	eived b	y: (Sign	ature//	Affiliation	n) 20		FE	5					CARGE EXPOSITE	Date	: 7 - 2	<u> </u>	13	Time:	4; ;	52	
Reling	ished by: (Signature)	an a		FES	Rece	eived b	y: (Sign	ature/A	Affiliation	n)	·····		Fe	JE	: ×				Date	: 7-2	4- ⁻	13	Time:	15:	30	
Relinqu	uished by: (Signature)			()	A Rece	pived b	y: (Sign	ature/A	Affiliation	n) 、 ~	he							200200000000000000000000000000000000000	Date 7	/25	-/13		Time:):3	0	(
				Y.		1																		06/01	/10 Re	vision

Page 1 of 1 Page 51 of 52

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Calselanca -				Pag	e 52 of 52
Environmental	WOI	RK ORDER #:	13-0	7-印[604
aboratorles, Inc.	AMPLE REC	EIPT FOF	RM	Cooler	/ of /
LIENT: FRESHWATER ENV	12., SERVICES		DATE:	07 /	25/13
TEMPERATURE: Thermomete	r ID: SC3 (Criteria: 0.0 °C	– 6.0 °C, not froze	n except s	ediment/ti	ssue)
Temperature $2 \cdot 9 \circ 0$	C - 0.2°C (CF) =	2 .7 °C ⊑] Blank	⊡ San	nple
□ Sample(s) outside temperatur	e criteria (PM/APM contac	ted by:).			
□ Sample(s) outside temperatur	e criteria but received on i	ce/chilled on same d	av of sam	oling.	
□ Received at ambient temper	rature, placed on ice fo	r transport by Co	ourier.	Č	
Ambient Temperature	□ Filter			Ini	tial: $\mathcal{P}^{\mathcal{I}}$
		a sela por conse a seguera de la consecuencia de la consecuencia Para entre entre consecuencia de la consecuencia			
CUSTODY SEALS INTACT:					
Cooler □	□ No (Not Intact)	□ Not Present	□ N/A	In	itial: <u>}</u>
□ Sample □	□ No (Not Intact)	D Not Present		In	itial: SH
SAMPLE CONDITION:			Yes	No	N/A
Chain-Of-Custody (COC) docum	ent(s) received with san	nples	.ø		
COC document(s) received com	plete	· · · · · · · · · · · · · · · · · · ·	. 🗹		
Collection date/time, matrix, and/d	or # of containers logged in ba	ased on sample labels.			
□ No analysis requested. □ Not	relinquished. Do date/	time relinquished.	1		
Sampler's name indicated on CC)C		¢		
Sample container label(s) consis	tent with COC	۲۰۱۹ م. ۲۰۰۰ م. ۱۹۹۹ م. ۱۹۹۹ م. ۱۹۹۹ م. ۱۹۹۹ م. ۱۹۹۹ م.	ø /		
Sample container(s) intact and g	ood condition				
Proper containers and sufficient	volume for analyses req	uested	$\mathbb{Z}_{/}$		
Analyses received within holding	time		Ъ		
oH/Res. CI/Diss. Sulfide/Diss. O	xygen received within 15	5-min holding time.	. 🗆		Ŕ
Proper preservation noted on CC	C or sample container.				Ø
□ Unpreserved vials received for	Volatiles analysis				n an an Anna Anna Anna Anna Anna Anna Anna Anna
Volatile analysis container(s) free	e of headspace		. 🗖	È	
Tedlar bag(s) free of condensation CONTAINER TYPE:	50		. 🗆		Z
Solid: □4ozCGJ ☑8ozCGJ [□16ozCGJ □Sleeve (_) □EnCore	s® ⊡Terr	aCores®	
Nater: □VOA □VOAh □VOA	na₂ □125AGB □125A	GBh □125AGBp	□1AGB	□1AGB n	a₂ □1AGB
□500AGB □500AGJ □500AG	3J s □250AGB □250	CGB □250CGBs	□1PB	□1PB na	□500PB
□250PB □250PB n □125PB [□125PB znna □100PJ	□100PJ na₂ □			0
Air: □Tedlar [®] □Canister Oth Container: C: Clear A: Amber P: Plastic G: Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃	er: Trip Bla Glass J: Jar B: Bottle Z: Ziploc na: NaOH p: H ₃ PO4 s: H ₂ SO4 u: L	nk Lot#: /Resealable Bag E: Env Itra-pure znna: ZnAc ₂ +Nav	Labelec velope OH f: Filtered	/Checked Reviewed Scanned	by: <u>}</u> by: <u>}</u>

SOP T100	_090	(11/20/12)

Return to Contents

APPENDIX F Approved Cultural Resources Management Permit Application

Yurok Tribe Cultural Resources Management Permit Application

FOR OFFICIA Date Received Staff Received Copy Sent To:	L USE ONLY : <u>K. m.</u> : <u>118</u> 1.3 Tribal F Native J Tribal A Permit J	leritage Prese American Grav rchaeologist Applicant	rvation Officer ves Protection	(THPO) and Repatriation Act	(NAGPRA) Coordinator
Instructions: documentatio completed be to complete a 1. Name of Ar	Complete and in to the Yurok fore the applic section and a unlicent (Yurok	return this ap Tribal Office ation will be ttach.	plication for in Klamath. A considered. L	n and necessary su All information requise separate pages	ipporting lested must be if more space is needed
Bay Marte		mbar Departi	nent, Corporat	ion, Lead Agency, Ir	ndividual, or Other Entity)
2. Mailing Ad					antrana Niver
PO Box 102	7 Klamath (A 05540	з	3. Tel	ephone Number
10 00x 102	r, Mamain (JA, 95548		707	-460-3248
4. Email Addr	95S			5. Fa	x Number
rmartell@y	uroktribe.n	sn.us		707	-482-1722
6. Location of a. Description possible).	Proposed Wo on of lands invo	rk: lved using the	best available	location information	(complete all boxes
i. Latitude and Longitude	ii. UTM Coordinates	iii. PLSS (township, range, and section)	iv. APN (parcel) Number	v. Assignment/ allotment	vi. Physical Address
See	Below				
b. Attach a work, def the proje Work des U.S. Geo Documer engineer	map and other fined as the Are ct, such as stag scribed below. I logical Survey ntation that may drawings.	relevant support a of Potential ing, implement ocation shoul (USGS) Topographic technologies be attached of the strached of th	orting docume Effect, which s Itation, cleanu d preferably be graphic Quadra could include p	ntation identifying the hould include all are b, or otherwise include mapped on a 1:24, angle map. Additiona hotos, parcel maps,	e location of proposed eas proposed for use in ded in the Proposed 000, 7.5-Minute Series al supporting site plans, surveys, and
7. Nature of Pr a. Please ch	oposed Work: eck all that app	ly:			
trenching	road co	nstruction	boring	drilling	plowing
excavation	road gr	ading	digging	tunneling	topsoil stripping
auguring	backfilli	ng	blasting	land leveling	install utility pole
quarrying	ground	clearing	grading	vegetation removal	other (explain below)

Yurok Tribe Cultural Resources Management Permit Application

Please complete the following additional project contact information as applicable:
12. Project Manager:
a. Name: Ray Martell
b. Title: Assistant Director
c. Organization: Yurok Tribe Environmental Program
d. Telephone number(s): (707) 482-1822
e. Email Address: rmartell@yuroktribe.nsn.us
f. Mailing Address: PO Box 1027, Klamath, CA 95548
13. Project Contractor:
a. Name: Ray Martell
b. Title: Assistant Director
c. Organization: Yurok Tribe Environmental Program
d. Telephone number(s): (707) 482-1822
e. Email Address: martell@yuroktribe.nsn.us
f. Mailing Address: PO Box 1027, Klamath, CA 95548
14. Project Inspector:
a. Name: Ray Martell
b. Title: Assistant Director
c. Organization: Yurok Tribe Environmental Program
d. Telephone number(s): (707) 482-1822
e. Email Address: martell@yuroktribe.nsn.us
f. Mailing Address: PO Box 1027, Klamath, CA 95548
15. Project Subcontractor:
a. Name. Ray Martell
b. Title: Assistant Director
c. Organization: Yurok Tribe Environmental Program
d. Telephone number(s): (707) 482-1822
e. Email Address: rmartell@yuroktribe.nsn.us
f. Mailing Address: PO Box 1027, Klamath, CA 95548

Page 3 of 5

Yurok Tribe Cultural Resources Management Permit Application

FOR OFFICIAL USE ONLY

Application Staff Review and Recommendations (Staff has 15 calendar days to review unless requiring input from Culture and/or NAGPRA Committees, then Staff has 15 calendar days from Committee decision date):

Application Reviewed (provide signature)	Reviewing Tribal Staff Tribal Heritage Preservation Officer (THPO)	Recommendations (attach additional sheets as necessary)	
Robert B. MConve		NOWE	
RMS Norme M. G-9-13	Native American Graves Protection and Repatriation Act (NAGPRA) Coordinator		
Nesi M.O- 1-9-13	Tribal Archaeologist		

If all reviewing Tribal staff determine that the proposed project will have no impact to cultural resources and provide no recommendations that suggest conditions and/or mitigation measures then the Tribal Chair may authorize the Permit Application without Council Consent.

Council Action (if applicable):

Permit Application	Council Agenda Number	Date of Council Session	With Conditions (if yes, explain below)
			🖂 Yes
Denied			□ No

Fermi Conditions:	ermit Condi	itions:	
-------------------	-------------	---------	--

ML P.O.R. S	1-11-13	
Signature of Tribal Chair	Date	

Thomas P. O'Rourke Sr Chairman Yurok Tribe

Page 5 of 5

Yurok Tribe PO Box 1027 Klamath • California, 95548 Office: 707.482 1350

November 6, 2012

Robert McConnell Yurok Tribe Heritage Preservation Officer P.O. Box 1027 Klamath, CA 95548

RE: Yurok Tribe

On behalf of the U.S. Environmental Protection Agency Determination of No Adverse Effect Soils sampling at Tribal allotment at Saints Rest:

Dear Mr. McConnell:

Please accept this letter as notification that Yurok Tribe, acting on behalf of US Environmental Protection Agency, determines that the proposed soil sampling activities at Saint's Rest Tribal Allotment APN: 530-053-010-073 (41°11'18.96"N, -123° 41', 11.20" W) S11 T9N R4E will result in No Adverse Effect per 36CFR800 for the National Historic Preservation Act (NHPA).

The Yurok Tribe Environmental Program will be conducting illegal dumpsite cleanup activities on the properties specified above. Please indicate your concurrence with the NHPA determination by signing below:

Concurrence: Robert B. McCornell Date: 1-9-13

Please contact me if require additional information regarding this determination.

Sincerely,

The P. OR

1-11-13

Thomas P. O'Rourke Chairman Yurok Tribe